Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Recombineering: a homologous recombination-based method of genetic engineering

Abstract

Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in Escherichia coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-stranded linear DNA substrates, so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene tags can be inserted and regions of bacterial artificial chromosomes or the E. coli genome can be subcloned by gene retrieval using recombineering. Most of these constructs can be made within about 1 week's time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of bacteriophage λ recombination system used for recombineering.
Figure 2: A flowchart of recombineering procedures.
Figure 3: Insertion of a selectable marker by recombineering.
Figure 4: Insertion of a nonselectable DNA fragment by recombineering.
Figure 5: Subcloning DNA fragments from genomic DNA.
Figure 6: Two-step 'hit and fix' method to generate subtle mutations using ss short PCR product or oligonucleotides as targeting vector.
Figure 7: Schematic representation of λ phage constructs used for recombineering.

Similar content being viewed by others

References

  1. Copeland, N.G., Jenkins, N.A. & Court, D.L. Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769–779 (2001).

    Article  CAS  Google Scholar 

  2. Ellis, H.M., Yu, D., DiTizio, T. & Court, D.L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 6742–6746 (2001).

    Article  CAS  Google Scholar 

  3. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli . Proc. Natl. Acad. Sci. USA 97, 5978–5983 (2000).

    Article  CAS  Google Scholar 

  4. Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, A.F. A new logic for DNA engineering using recombination in Escherichia coli . Nat. Genet. 20, 123–128 (1998).

    Article  CAS  Google Scholar 

  5. Zhang, Y., Muyrers, J.P., Testa, G. & Stewart, A.F. DNA cloning by homologous recombination in Escherichia coli . Nat. Biotechnol. 18, 1314–1317 (2000).

    Article  CAS  Google Scholar 

  6. Murphy, K.C. Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli . J. Bacteriol. 180, 2063–2071 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Murphy, K.C., Campellone, K.G. & Poteete, A.R. PCR-mediated gene replacement in Escherichia coli . Gene 246, 321–330 (2000).

    Article  CAS  Google Scholar 

  8. Swaminathan, S. et al. Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29, 14–21 (2001).

    Article  CAS  Google Scholar 

  9. Costantino, N. & Court, D.L. Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proc. Natl. Acad. Sci. USA 100, 15748–15753 (2003).

    Article  CAS  Google Scholar 

  10. Datta, S., Costantino, N., Zhou, X. & Court, D.L. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc. Natl. Acad. Sci. USA 105, 1626–1631 (2008).

    Article  CAS  Google Scholar 

  11. Ausubel, F.M. et al. (eds.) Current Protocols in Molecular Biology Vol. 1, Chapters 1 and 6 (John Wiley & Sons Inc., Hoboken, NJ, 2008).

    Google Scholar 

  12. Sawitzke, J.A. et al. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol. 421, 171–199 (2007).

    Article  CAS  Google Scholar 

  13. Thomason, L.C. et al. In Current Protocols in Molecular Biology Vol. 1, Chapter 1, Unit 16 (eds. Ausubel, F.M. et al.) 1–24 (John Wiley & Sons Inc., Hoboken, NJ, 2007).

    Google Scholar 

  14. Sternberg, N.L. Cloning high molecular weight DNA fragments by the bacteriophage P1 system. Trends Genet. 8, 11–16 (1992).

    Article  CAS  Google Scholar 

  15. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797 (1992).

    Article  CAS  Google Scholar 

  16. Muyrers, J.P. et al. In Methods in Molecular Biology: Bacterial Artificial Chromosomes Volume. 2: Functional Studies Vol. 256 (eds. Zhao, S. & Stodolsky, M.) 107–121 (Humana Press, Totowa, NJ, 2004).

    CAS  Google Scholar 

  17. Heaney, J.D., Rettew, A.N. & Bronson, S.K. Tissue-specific expression of a BAC transgene targeted to the Hprt locus in mouse embryonic stem cells. Genomics 83, 1072–1082 (2004).

    Article  CAS  Google Scholar 

  18. Kuznetsov, S. et al. RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females. J. Cell Biol. 176, 581–592 (2007).

    Article  CAS  Google Scholar 

  19. Yang, Y., Swaminathan, S., Martin, B.K. & Sharan, S.K. Aberrant splicing induced by missense mutations in BRCA1: clues from a humanized mouse model. Hum. Mol. Genet. 12, 2121–2131 (2003).

    Article  CAS  Google Scholar 

  20. Chan, W. et al. A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic. Acids Res. 35, e64 (2007).

    Article  Google Scholar 

  21. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    Article  CAS  Google Scholar 

  22. Karu, A.E., Sakaki, Y., Echols, H. & Linn, S. The gamma protein specified by bacteriophage λ. Structure and inhibitory activity for the RecBC enzyme of Escherichia coli . J. Biol. Chem. 250, 7377–7387 (1975).

    CAS  PubMed  Google Scholar 

  23. Murphy, K.C. λ Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J. Bacteriol. 173, 5808–5821 (1991).

    Article  CAS  Google Scholar 

  24. Karakousis, G. et al. The β protein of phage λ binds preferentially to an intermediate in DNA renaturation. J. Mol. Biol. 276, 721–731 (1998).

    Article  CAS  Google Scholar 

  25. Kmiec, E. & Holloman, W.K. β protein of bacteriophage λ promotes renaturation of DNA. J. Biol. Chem. 256, 12636–12639 (1981).

    CAS  PubMed  Google Scholar 

  26. Muniyappa, K. & Mythili, E. Phage λ β protein, a component of general recombination, is associated with host ribosomal S1 protein. Biochem. Mol. Biol. Int. 31, 1–11 (1993).

    CAS  PubMed  Google Scholar 

  27. Cassuto, E. & Radding, C.M. Mechanism for the action of λ exonuclease in genetic recombination. Nature New Biol. 229, 13–16 (1971).

    Article  CAS  Google Scholar 

  28. Little, J.W. An exonuclease induced by bacteriophage λ. II. Nature of the enzymatic reaction. J. Biol. Chem. 242, 679–686 (1967).

    CAS  PubMed  Google Scholar 

  29. Carter, D.M. & Radding, C.M. The role of exonuclease and β protein of phage λ in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease. J. Biol. Chem. 246, 2502–2512 (1971).

    CAS  PubMed  Google Scholar 

  30. Cassuto, E., Lash, T., Sriprakash, K.S. & Radding, C.M. Role of exonuclease and β protein of phage λ in genetic recombination. V. Recombination of λ DNA in vitro . Proc. Natl. Acad. Sci. USA 68, 1639–1643 (1971).

    Article  CAS  Google Scholar 

  31. Court, D.L., Sawitzke, J.A. & Thomason, L.C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

    Article  CAS  Google Scholar 

  32. Sergueev, K., Yu, D., Austin, S. & Court, D. Cell toxicity caused by products of the p L operon of bacteriophage lambda. Gene 272, 227–235 (2001).

    Article  CAS  Google Scholar 

  33. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  34. Wang, J. et al. An improved recombineering approach by adding RecA to λ Red recombination. Mol. Biotechnol. 32, 43–53 (2006).

    Article  Google Scholar 

  35. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  Google Scholar 

  36. Court, D.L., Oppenheim, A.B. & Adhya, S.L. A new look at bacteriophage λ genetic networks. J. Bacteriol. 189, 298–304 (2007).

    Article  CAS  Google Scholar 

  37. Dodd, I.B., Shearwin, K.E. & Egan, J.B. Revisited gene regulation in bacteriophage lambda. Curr. Opin. Genet. Dev. 15, 145–152 (2005).

    Article  CAS  Google Scholar 

  38. Murphy, K.C. & Campellone, K.G. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli . BMC Mol. Biol. 4, 11 (2003).

    Article  Google Scholar 

  39. Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T. & Kado, C.I. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J. Bacteriol. 164, 918–921 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Warming, S., Costantino, N., Court, D.L., Jenkins, N.A. & Copeland, N.G. Simple and highly efficient BAC recombineering using galK selection. Nucleic. Acids Res. 33, e36 (2005).

    Article  Google Scholar 

  41. Rivero-Muller, A., Lajic, S. & Huhtaniemi, I. Assisted large fragment insertion by Red/ET-recombination (ALFIRE)—an alternative and enhanced method for large fragment recombineering. Nucleic. Acids Res. 35, e78 (2007).

    Article  Google Scholar 

  42. Wong, Q.N. et al. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli . Nucleic. Acids Res. 33, e59 (2005).

    Article  Google Scholar 

  43. DeVito, J.A. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli . Nucleic. Acids Res. 36, e4 (2008).

    Article  Google Scholar 

  44. Lee, E.C. et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001).

    Article  CAS  Google Scholar 

  45. Datta, S., Costantino, N. & Court, D.L. A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115 (2006).

    Article  CAS  Google Scholar 

  46. Kotzamanis, G. & Huxley, C. Recombining overlapping BACs into a single larger BAC. BMC Biotechnol. 4, 1 (2004).

    Article  Google Scholar 

  47. Venken, K.J., He, Y., Hoskins, R.A. & Bellen, H.J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster . Science 314, 1747–1751 (2006).

    Article  CAS  Google Scholar 

  48. Yang, Y. & Sharan, S.K. A simple two-step, 'hit and fix' method to generate subtle mutations in BACs using short denatured PCR fragments. Nucleic Acids Res. 31, e80 (2003).

    Article  Google Scholar 

  49. Li, X.T. et al. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli . Nucleic Acids Res. 31, 6674–6687 (2003).

    Article  CAS  Google Scholar 

  50. Thomason, L.C., Costantino, N., Shaw, D.V. & Court, D.L. Multicopy plasmid modification with phage lambda Red recombineering. Plasmid 58, 148–158 (2007).

    Article  CAS  Google Scholar 

  51. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual/Third Edition (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

  52. Sinnett, D., Richer, C. & Baccichet, A. Isolation of stable bacterial artificial chromosome DNA, using a modified alkaline lysis method. Biotechniques 24, 752–754 (1998).

    Article  CAS  Google Scholar 

  53. Court, D.L. et al. Mini-λ: a tractable system for chromosome and BAC engineering. Gene 315, 63–69 (2003).

    Article  CAS  Google Scholar 

  54. Bubunenko, M., Baker, T. & Court, D.L. Essentiality of ribosomal and transcription antitermination proteins analyzed by systematic gene replacement in Escherichia coli . J. Bacteriol. 189, 2844–2853 (2007).

    Article  CAS  Google Scholar 

  55. Durfee, T. et al. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J. Bacteriol. 190, 2597–2606 (2008).

    Article  CAS  Google Scholar 

  56. Hanahan, D. Techniques for transformation of E.coli . In DNA cloning techniques: a practical approach 1 (ed. Glover, D.M.) 109–135 (IRL Press, Oxford, 1985).

    Google Scholar 

Download references

Acknowledgements

We thank Nina Costantino and James Sawitzke for helpful comments. This research was supported by the Intramural Research Program of NIH, National Cancer Institute, Center for Cancer Research. This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shyam K Sharan or Donald L Court.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharan, S., Thomason, L., Kuznetsov, S. et al. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4, 206–223 (2009). https://doi.org/10.1038/nprot.2008.227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.227

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing