Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical antennas based on coupled nanoholes in thin metal films

Abstract

The ability to control optical effects at the nanoscale is a challenge that could be of great importance for a range of photonic applications. However, progress requires a deep understanding of the relationship between near-field and far-field properties of the individual elements of the nanostructure, as well as of the role of nano-optical interactions. Here, we show that the strong interaction between nanoholes in optically thin metal films can be used to readily tune their spectral response and visibility. Control of this interaction in short chains of nanoholes enables either amplification or almost total suppression of the scattered light. The phenomena are interpreted in terms of hole coupling mediated via antisymmetric surface plasmon polaritons, which makes the nanohole chains effectively behave as linear wire antennas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of visibility phenomena in two orthogonal nanohole chains.
Figure 2: Experimental elastic scattering spectra of nanohole chains (N=2,8) measured in the in-phase configuration of incidence.
Figure 3: Model of hole–hole interaction mediated by the antisymmetric bound (ab) SPP mode.
Figure 4: Comparison of experimental elastic scattering spectra for the in-phase and out-of-phase configurations for different numbers of nanoholes.
Figure 5: Nano-antenna based on a chain of nanoholes.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  2. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  ADS  Google Scholar 

  3. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  4. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  ADS  Google Scholar 

  5. Andrew, P. & Barnes, W. L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004).

    Article  ADS  Google Scholar 

  6. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E. & Ebbesen, T. W. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005).

    Article  ADS  Google Scholar 

  7. Fromm, D. P., Sundaramurthy, A., Schuck, P. J., Kino, G. & Moerner, W. E. Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004).

    Article  ADS  Google Scholar 

  8. Muhlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  9. Xu, H. X., Bjerneld, E. J., Kall, M. & Borjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999).

    Article  ADS  Google Scholar 

  10. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  ADS  Google Scholar 

  11. Haes, A. J., Chang, L., Klein, W. L. & Van Duyne, R. P. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005).

    Article  Google Scholar 

  12. Rindzevicius, T. et al. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 5, 2335–2339 (2005).

    Article  ADS  Google Scholar 

  13. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  14. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  15. Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

    Article  ADS  Google Scholar 

  16. Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  ADS  Google Scholar 

  17. Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002).

    Article  ADS  Google Scholar 

  18. Degiron, A. & Ebbesen, T. W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J. Opt. Pure Appl. Opt. 7, S90–S96 (2005).

    Article  ADS  Google Scholar 

  19. Grupp, D. E., Lezec, H. J., Thio, T. & Ebbesen, T. W. Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture. Adv. Mater. 11, 860–862 (1999).

    Article  Google Scholar 

  20. Ruan, Z. C. & Qiu, M. Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances. Phys. Rev. Lett. 96, 233901 (2006).

    Article  ADS  Google Scholar 

  21. van der Molen, K. L. et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory. Phys. Rev. B 72, 045421 (2005).

    Article  ADS  Google Scholar 

  22. Treacy, M. M. J. Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys. Rev. B 66, 195105 (2002).

    Article  ADS  Google Scholar 

  23. Vigoureux, J. M. Analysis of the Ebbesen experiment in the light of evanescent short range diffraction. Opt. Commun. 198, 257–263 (2001).

    Article  ADS  Google Scholar 

  24. Lezec, H. J. & Thio, T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express 12, 3629–3651 (2004).

    Article  ADS  Google Scholar 

  25. Gay, G. et al. The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nature Phys. 2, 262–267 (2006).

    Article  ADS  Google Scholar 

  26. Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by thin, lossy metal-films. Phys. Rev. B 33, 5186–5201 (1986).

    Article  ADS  Google Scholar 

  27. Rindzevicius, T. et al. Nanohole plasmons in optically thin gold films. J. Phys. Chem. C 111, 1207 (2007).

    Article  Google Scholar 

  28. Prikulis, J., Hanarp, P., Olofsson, L., Sutherland, D. & Kall, M. Optical spectroscopy of nanometric holes in thin gold films. Nano Lett. 4, 1003–1007 (2004).

    Article  ADS  Google Scholar 

  29. Hanarp, P., Kall, M. & Sutherland, D. S. Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J. Phys. Chem. B 107, 5768–5772 (2003).

    Article  Google Scholar 

  30. Draine, B. T. & Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994).

    Article  ADS  Google Scholar 

  31. Gunnarsson, L. et al. Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions. J. Phys. Chem. B 109, 1079–1087 (2005).

    Article  Google Scholar 

  32. Gao, H. W., Henzie, J. & Odom, T. W. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 6, 2104–2108 (2006).

    Article  ADS  Google Scholar 

  33. Chang, S. H., Gray, S. K. & Schatz, G. C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Express 13, 3150–3165 (2005).

    Article  ADS  Google Scholar 

  34. Sepulveda, B., Lechuga, L. A. & Armelles, G. Magnetooptic effects in surface-plasmon-polaritons slab waveguides. J. Lightwave Technol. 24, 945–955 (2006).

    Article  ADS  Google Scholar 

  35. Balanis, C. A. Antenna Theory: Analysis and Design (Wiley, New Jersey, 2005).

    Google Scholar 

Download references

Acknowledgements

The authors thank P. Johansson, J. G. de Abajo, J. Aizpurua, P. Nordlander, T. Rindzevicius, T. Pakizeh and S. A. Astakhov for stimulating discussions and suggestions. Financial support from the Swedish Research Council and the Swedish Foundation for Strategic Research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Y.A. and L.E. prepared the samples. Y.A. and B.S. carried out optical measurements and data analysis. B.S. and M.K. made numerical simulations and analytical theory. Y.A., B.S., E.O. and M.K. planned the work. Y.A., B.S. and M.K. wrote the paper. All authors discussed the results.

Corresponding authors

Correspondence to Y. Alaverdyan or M. Käll.

Supplementary information

Supplementary Information

Supplementary Figures S1 and S2 (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alaverdyan, Y., Sepúlveda, B., Eurenius, L. et al. Optical antennas based on coupled nanoholes in thin metal films. Nature Phys 3, 884–889 (2007). https://doi.org/10.1038/nphys785

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys785

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing