Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visible continuous emission from a silica microphotonic device by third-harmonic generation

Abstract

Nonlinear harmonic generation is widely used to extend the emission wavelength of laser sources. These devices typically require high peak powers to generate sufficient nonlinear optical response. Here, we demonstrate experimentally and analyse theoretically continuous-wave, visible emission from a silica microresonator on a silicon chip by third-harmonic generation. Emission is observed with pump powers of less than 300 μW, and is verified to scale cubically with pump power. We also observe third-order sum-frequency generation and mixing of the pump with a concomitant Raman laser within the same structure, giving rise to emission of various colours. In addition to providing low-power operation, this result opens the possibility of silicon microphotonic emitters spanning all the way down to the ultraviolet and operating continuously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Experimental results.
Figure 3: Observation of directional emission of the TH signal.
Figure 4: Phase matching between the infrared pump and the visible TH.
Figure 5: Experimental observation of internal modes and multicolour generation.
Figure 6: Measured spectra showing third-order sum-frequency generation where two 1,674 nm photons are summed with one 1,553 nm photon to generate emission at 542 nm.

Similar content being viewed by others

References

  1. Desurvire, E. Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

    Google Scholar 

  2. Becker, P. C., Olsson, N. A. & Simpson, J. R. Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, San Diego, 1999).

    Google Scholar 

  3. Digonnet, M. J. F. Rare-Earth-Doped Fiber Lasers and Amplifiers 2nd edn (Dekker, New York, 2001).

    Book  Google Scholar 

  4. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  5. Liu, A. S. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004).

    Article  ADS  Google Scholar 

  6. Knight, J. C. Photonic crystal fibres. Nature 424, 847–851 (2003).

    Article  ADS  Google Scholar 

  7. Knight, J. C., Birks, T. A., Russell, P. S. & Atkin, D. M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996).

    Article  ADS  Google Scholar 

  8. Bufetov, I. A., Grekov, M. V., Golant, K. M., Dianov, E. M. & Khrapko, R. R. Ultraviolet-light generation in nitrogen-doped silica fiber. Opt. Lett. 22, 1394–1396 (1997).

    Article  ADS  Google Scholar 

  9. Acker, W. P., Leach, D. H. & Chang, R. K. Third-order optical sum-frequency generation in micrometer-sized liquid droplets. Opt. Lett. 14, 402–404 (1989).

    Article  ADS  Google Scholar 

  10. Leach, D. H., Acker, W. P. & Chang, R. K. Effect of the phase-velocity and spatial overlap of spherical resonances on sum-frequency generation in droplets. Opt. Lett. 15, 894–896 (1990).

    Article  ADS  Google Scholar 

  11. Leach, D. H., Chang, R. K., Acker, W. P. & Hill, S. C. Third-order sum-frequency generation in droplets—experimental results. J. Opt. Soc. Am. B 10, 34–45 (1993).

    Article  ADS  Google Scholar 

  12. Kasparian, J. et al. Angular dependences of third harmonic generation from microdroplets. Phys. Rev. Lett. 78, 2952–2955 (1997).

    Article  ADS  Google Scholar 

  13. Qian, S. X. & Chang, R. K. Multiorder stokes emission from micrometer-size droplets. Phys. Rev. Lett. 56, 926–929 (1986).

    Article  ADS  Google Scholar 

  14. Lin, H. B., Eversole, J. D. & Campillo, A. J. Continuous-wave stimulated Raman-scattering in microdroplets. Opt. Lett. 17, 828–830 (1992).

    Article  ADS  Google Scholar 

  15. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    Article  ADS  Google Scholar 

  16. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  17. Ponce, F. A. & Bour, D. P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997).

    Article  ADS  Google Scholar 

  18. Boyd, R. W. Nonlinear Optics 2nd edn (Academic, San Diego, 2003).

    Google Scholar 

  19. Franken, P. A., Weinreich, G., Peters, C. W. & Hill, A. E. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–120 (1961).

    Article  ADS  Google Scholar 

  20. Osterberg, U. & Margulis, W. Dye-laser pumped by Nd-YAG laser-pulses frequency doubled in a glass optical fiber. Opt. Lett. 11, 516–518 (1986).

    Article  ADS  Google Scholar 

  21. Myers, R. A., Mukherjee, N. & Brueck, S. R. J. Large second-order nonlinearity in poled fused-silica. Opt. Lett. 16, 1732–1734 (1991).

    Article  ADS  Google Scholar 

  22. Dominic, V. & Feinberg, J. Light-induced second-harmonic generation in glass via multiphoton ionization. Phys. Rev. Lett. 71, 3446–3449 (1993).

    Article  ADS  Google Scholar 

  23. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).

    Article  ADS  Google Scholar 

  24. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  25. Knight, J. C., Cheung, G., Jacques, F. & Birks, T. A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997).

    Article  ADS  Google Scholar 

  26. Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000).

    Article  ADS  Google Scholar 

  27. Wang, S., Carmon, T., Ostby, E. P. & Vahala, K. J. Quantum Electronics and Laser Science Conference, May 7, Baltimore, USA (accepted for oral presentation, 2007).

  28. Yang, L., Armani, D. K. & Vahala, K. J. Fiber-coupled erbium microlasers on a chip. Appl. Phys. Lett. 83, 825–826 (2003).

    Article  ADS  Google Scholar 

  29. Ilchenko, V. S., Starodubov, D. S., Gorodetsky, M. L., Maleki, L. & Feinberg, J. Conference on Lasers and ElectroOptics 67 (Optical Society of America, Baltimore, 1999).

    Google Scholar 

  30. Haus, H. A. & Huang, W. P. Coupled-mode theory. Proc. IEEE 79, 1505–1518 (1991).

    Article  Google Scholar 

  31. Stolen, R. H., Bjorkhol, Je. & Ashkin, A. Phase-matched 3-wave mixing in silica fiber optical-waveguides. Appl. Phys. Lett. 24, 308–310 (1974).

    Article  ADS  Google Scholar 

  32. Johnson, B. R. Theory of morphology-dependent resonances— shape resonances and width formulas. J. Opt. Soc. Am. A 10, 343–352 (1993).

    Article  ADS  Google Scholar 

  33. Baak, T. Silicon oxynitride—a material for grin optics. Appl. Opt. 21, 1069–1072 (1982).

    Article  ADS  Google Scholar 

  34. Savchenkov, A. A., Ilchenko, V. S., Matsko, A. B. & Maleki, L. Kilohertz optical resonances in dielectric crystal cavities. Phys. Rev. A 70, 051804 (2004).

    Article  ADS  Google Scholar 

  35. Robinson, J. T., Manolatou, C., Chen, L. & Lipson, M. Ultrasmall mode volumes in dielectric optical microcavities. Phys. Rev. Lett. 95, 143901 (2005).

    Article  ADS  Google Scholar 

  36. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  37. Kippenberg, T. J., Kalkman, J., Polman, A. & Vahala, K. J. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 74, 051802 (2006).

    Article  ADS  Google Scholar 

  38. Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  39. Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with M. Shumate, J. Scheuer and A. Yariv and support from the Caltech Lee Center and DARPA. T.C. acknowledges a fellowship from the Center for the Physics of Information at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

T.C. fabricated the devices, carried out the experiments, analysed the data and derived the analytical and numerical calculations. K.J.V. supervised all aspects of this project. Both authors made contributions to the concepts demonstrated and proposed in the article.

Corresponding author

Correspondence to Kerry J. Vahala.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmon, T., Vahala, K. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nature Phys 3, 430–435 (2007). https://doi.org/10.1038/nphys601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing