Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of disorder on electron spin dynamics in a semiconductor quantum well

Abstract

Using the spin of the electron to carry information, instead of or in addition to its charge, could provide advances in the capabilities of microelectronics. Successful implementation of spin-based electronics requires preservation of the electron spin coherence. In n-doped semiconductors, long spin-coherence times have been observed, with a maximum at a ‘magic’ electron density. Here, we vary the density in a two-dimensional electron gas, and show that spin coherence is lost because of the interplay between localization by disorder and dynamical scattering. By measuring the electron Landé g-factor dependence on density, we determine the density of states (DOS), which characterizes the disorder potential. Using our knowledge of the DOS, a simple model estimates the temperature and excitation intensity dependence of the g factor, qualitatively agreeing with experiments. This agreement confirms the importance of disorder and provides predictive power for designing spin-based electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Density and field dependence of electron spin dephasing.
Figure 2: Density dependence of the g factor.
Figure 3: Temperature dependence of the g factor.
Figure 4: Intensity and spin degree dependence of the g factor.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  ADS  Google Scholar 

  2. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  ADS  Google Scholar 

  3. Kikkawa, J. M., Smorchkova, I. P., Samarth, N. & Awschalom, D. D. Room-temperature spin memory in two-dimensional electron gases. Science 277, 1284–1287 (1997).

    Article  Google Scholar 

  4. Dzhioev, R. I. et al. Low-temperature spin relaxation in n-type GaAs. Phys. Rev. B 66, 245204 (2002).

    Article  ADS  Google Scholar 

  5. Sandhu, J. S., Heberle, A. P., Baumberg, J. J. & Cleaver, J. R. A. Gateable suppression of spin relaxation in semiconductors. Phys. Rev. Lett. 86, 2150–2153 (2001).

    Article  ADS  Google Scholar 

  6. Furis, M., Smith, D. L., Crooker, S. A. & Reno, J. L. Bias-dependent electron spin lifetimes in n-GaAs and the role of donor impact ionization. Appl. Phys. Lett. 89, 102102 (2006).

    Article  ADS  Google Scholar 

  7. Hoffmann, H. et al. Optical spin pumping of modulation-doped electrons probed by a two-color Kerr rotation technique. Phys. Rev. B 74, 073407 (2006).

    Article  ADS  Google Scholar 

  8. Salis, G. et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001).

    Article  ADS  Google Scholar 

  9. Maude, D. K. et al. Spin excitations of a two-dimensional electron gas in the limit of vanishing Landé g factor. Phys. Rev. Lett. 77, 4604–4607 (1996).

    Article  ADS  Google Scholar 

  10. Ivchenko, E. L., Kiselev, A. A. & Willander, M. Electronic g factor in biased quantum wells. Solid State Commun. 102, 375–378 (1997).

    Article  ADS  Google Scholar 

  11. Snelling, M. J. et al. Magnetic g factor of electrons in GaAs/AlxGa1−xAs quantum wells. Phys. Rev. B 44, 11345–11352 (1991).

    Article  ADS  Google Scholar 

  12. Sirenko, A. A. et al. Electron and hole g factors measured by spin-flip Raman scattering in CdTe/Cd1−xMgxTe single quantum wells. Phys. Rev. B 56, 2114–2119 (1997).

    Article  ADS  Google Scholar 

  13. Stein, D., Klitzing, K. v. & Weimann, G. Electron spin resonance on GaAs–AlxGa1−xAs heterostructures. Phys. Rev. Lett. 51, 130–133 (1983).

    Article  ADS  Google Scholar 

  14. Yang, M. J., Wagner, R. J., Shanabrook, B. V., Waterman, J. R. & Moore, W. J. Spin-resolved cyclotron resonance in InAs quantum wells: A study of the energy-dependent g factor. Phys. Rev. B 47, 6807–6810 (1993).

    Article  ADS  Google Scholar 

  15. Dawson, P. & Godfrey, M. J. Recombination dynamics of spatially separated electron-hole plasmas in GaAs/AlAs mixed type-I/type-II quantum well structures. Phys. Rev. B 68, 115326 (2003).

    Article  ADS  Google Scholar 

  16. Crooker, S. A., Awschalom, D. D., Baumberg, J. J., Flack, F. & Samarth, N. Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells. Phys. Rev. B 56, 7574–7588 (1997).

    Article  ADS  Google Scholar 

  17. Chen, Z., Bratschitsch, R. & Cundiff, S. T. Interference effects in transient Kerr spectra of a semiconductor multilayer structure. Opt. Lett. 30, 2320–2322 (2005).

    Article  ADS  Google Scholar 

  18. Amand, T. et al. Spin quantum beats of 2D excitons. Phys. Rev. Lett. 78, 1355–1358 (1997).

    Article  ADS  Google Scholar 

  19. Malinowski, A. & Harley, R. T. Anisotropy of the electron g factor in lattice-matched and strained-layer III-V quantum wells. Phys. Rev. B 62, 2051–2056 (2000).

    Article  ADS  Google Scholar 

  20. Yeo, T., McCombe, B. D., Ashkinadze, B. M. & Pfeiffer, L. Metal-insulator transition of spatially separated electrons and holes in mixed type I-type II GaAs/AlAs quantum wells. Physica E 12, 620–623 (2002).

    Article  ADS  Google Scholar 

  21. Hermann, C. & Weisbuch, C. perturbation theory in III-V compounds and alloys: a reexamination. Phys. Rev. B 15, 823–833 (1977).

    Article  ADS  Google Scholar 

  22. D’yakonov, M. I. & Perel’, V. I. Spin orientation of electrons associated with the interband absorption of light in semiconductors. Zh. Eksp. Teor. Fiz. 60, 1954–1965 (1971).

    Google Scholar 

  23. Oestreich, M. & Ruhle, W. W. Temperature dependence of the electron Landé g factor in GaAs. Phys. Rev. Lett. 74, 2315–2318 (1995).

    Article  ADS  Google Scholar 

  24. Carter, S. G., Chen, Z. & Cundiff, S. T. Optical measurement and control of spin diffusion in n-doped GaAs quantum wells. Phys. Rev. Lett. 97, 136602 (2006).

    Article  ADS  Google Scholar 

  25. Dobers, M., Klitzing, K. v. & Weimann, G. Electron-spin resonance in the two-dimensional electron gas of GaAs–AlxGa1−xAs heterostructures. Phys. Rev. B 38, 5453–5456 (1988).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from NSF. S.G.C. is supported by a National Research Council Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven T. Cundiff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Carter, S., Bratschitsch, R. et al. Effects of disorder on electron spin dynamics in a semiconductor quantum well. Nature Phys 3, 265–269 (2007). https://doi.org/10.1038/nphys537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing