Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Radiofrequency-dressed-state potentials for neutral atoms

Abstract

Potentials for atoms can be created by external fields acting on properties such as magnetic moment, charge, polarizability, or by oscillating fields that couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronically excited states of an atom with light. Here, we present an extensive experimental analysis of potentials derived from radiofrequency (RF) coupling of electronic ground states. The coupling is magnetic and the vector character allows the design of versatile microscopic state-dependent potential landscapes. Compared with standard magnetic trapping, we find no additional heating or (collisional) loss up to densities of 1015 atoms cm−3. We demonstrate robust evaporative cooling in RF potentials, which allows easy production of Bose–Einstein condensates in complex potentials. Altogether, this makes RF dressing a new powerful tool for manipulating ultracold atoms complementary to magnetic trapping and optical dipole potentials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atom-chip setup for RF potentials.
Figure 2: Orientation of the double-well potential as a function of the plane of polarization in the case of a linearly polarized RF field.
Figure 3: State-dependent potentials for Rb in the F=2,mF=2 state created with (nearly) circularly polarized RF fields.
Figure 4: Comparing double-well potentials created with static fields and RF dressing based on the same structure size and distance to the chip.
Figure 5: Comparison of independent and coherently split BECs.

Similar content being viewed by others

References

  1. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions (Wiley, New York, 1992).

    Google Scholar 

  2. Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

    Article  ADS  Google Scholar 

  3. Muskat, E., Dubbers, D. & Schärpf, O. Dressed neutrons. Phys. Rev. Lett. 58, 2047–2050 (1987).

    Article  ADS  Google Scholar 

  4. Agosta, C. C., Silvera, I. F., Stoof, H. T. C & Verhaar, B. J. Trapping of neutral atoms with resonant microwave radiation. Phys. Rev. Lett. 62, 2361–2364 (1989).

    Article  ADS  Google Scholar 

  5. Spreeuw, R. J. C et al. Demonstration of neutral atom trapping with microwaves. Phys. Rev. Lett. 72, 3162–3165 (1994).

    Article  ADS  Google Scholar 

  6. Zobay, O. & Garraway, B. M. Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195–1198 (2001).

    Article  ADS  Google Scholar 

  7. Colombe, Y. et al. Ultracold atoms confined in rf-induced two-dimensional trapping potentials. Europhys. Lett. 67, 593–599 (2004).

    Article  ADS  Google Scholar 

  8. Schumm, T. et al. Matter-wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005).

    Article  ADS  Google Scholar 

  9. Lesanovsky, I. et al. Adiabatic radio frequency potentials for the coherent manipulation of matter waves. Phys. Rev. A 73, 033619 (2006).

    Article  ADS  Google Scholar 

  10. Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

    Article  ADS  Google Scholar 

  11. Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Regimes of quantum degeneracy in trapped 1d gases. Phys. Rev. Lett. 85, 3745–3749 (2000).

    Article  ADS  Google Scholar 

  12. Menotti, C. & Stringari, S. Collective oscillations of a one-dimensional trapped Bose-Einstein gas. Phys. Rev. A 66, 043610 (2002).

    Article  ADS  Google Scholar 

  13. Dettmer, S. et al. Observation of phase fluctuations in elongated Bose-Einstein condensates. Phys. Rev. Lett. 87, 160406 (2001).

    Article  ADS  Google Scholar 

  14. Krüger, P. et al. Trapping and manipulating neutral atoms with electrostatic fields. Phys. Rev. Lett. 91, 233201 (2003).

    Article  ADS  Google Scholar 

  15. Calarco, T. et al. Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps. Phys. Rev. A 61, 022304 (2000).

    Article  ADS  Google Scholar 

  16. Cassettari, D., Hessmo, B., Folman, R., Maier, T. & Schmiedmayer, J. Beam splitter for guided atoms. Phys. Rev. Lett. 85, 5483–5487 (2000).

    Article  ADS  Google Scholar 

  17. Hinds, E. A., Vale, C. J. & Boshier, M. G. Two-wire waveguide and interferometer for cold atoms. Phys. Rev. Lett. 86, 1462–1465 (2001).

    Article  ADS  Google Scholar 

  18. Hänsel, W., Reichel, J., Hommelhoff, P. & Hänsch, T. W. Trapped-atom interferometer in a magnetic microtrap. Phys. Rev. A 64, 063607 (2001).

    Article  ADS  Google Scholar 

  19. Stickney, J. & Zozulya, A. Influence of nonadiabaticity and nonlinearity on the operation of cold-atom beam splitters. Phys. Rev. A 68, 013611 (2003).

    Article  ADS  Google Scholar 

  20. Shin, Y. et al. Interference of Bose-Einstein condensates split with an atom chip. Phys. Rev. A 72, 021604 (2005).

    Article  ADS  Google Scholar 

  21. Esteve, J. et al. Realizing a stable magnetic double-well potential on an atom chip. Eur. Phys. J. D 35, 141–146 (2005).

    Article  ADS  Google Scholar 

  22. Davis, J. D. 2d magnetic traps for ultra-cold atoms: a simple theory using complex numbers. Eur. Phys. J. D 18, 27–36 (2002).

    ADS  Google Scholar 

  23. Lesanovsky, I., Hofferberth, S., Schmiedmayer, J. & Schmelcher, P. Manipulation of ultracold atoms in dressed adiabatic rf-potentials. Preprint at <http://arxiv.org/abs/physics/0606165> (2006).

  24. Moerdijk, A. J. & Verhaar, B. J. Collisional two- and three-body decay rates of dilute quantum gases at ultralow temperatures. Phys. Rev. A 53, R19–R22 (1996).

    Article  ADS  Google Scholar 

  25. Julienne, P. S., Mies, F. H., Tiesinga, E. & Williams, C. J. Collisional stability of double Bose condensates. Phys. Rev. Lett. 78, 1880–1883 (1997).

    Article  ADS  Google Scholar 

  26. Moerdijk, A. J., Verhaar, B. J. & Nagtegaal, T. M. Collisions of dressed ground-state atoms. Phys. Rev. A 53, 4343–4351 (1996).

    Article  ADS  Google Scholar 

  27. Suominen, K.-A., Tiesinga, E. & Julienne, P. S. Nonadiabatic dynamics in evaporative cooling of trapped atoms by a radio-frequency field. Phys. Rev. A 58, 3983–3992 (1998).

    Article  ADS  Google Scholar 

  28. White, M., Gao, H., Pasienski, M. & DeMarco, B. Bose-Einstein condensates in rf-dressed adiabatic potentials. Preprint at <http://arxiv.org/abs/cond-mat/0605393> (2006).

  29. Castin, Y. & Dalibard, J. Relative phase of two Bose-Einstein condensates. Phys. Rev. A 55, 4330–4337 (1997).

    Article  ADS  Google Scholar 

  30. Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).

    Article  Google Scholar 

  31. Villain, P. et al. Quantum dynamics of the phase of a Bose-Einstein condensate. J. Mod. Opt. 44, 1775–1800 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  32. Courteille, P. W. et al. Highly versatile atomic micro traps generated by multifrequency magnetic field modulation. J. Phys. B 39, 1055–1064 (2006).

    Article  ADS  Google Scholar 

  33. Wildermuth, S. et al. Optimized magneto-optical trap for experiments with ultracold atoms near surfaces. Phys. Rev. A 69, 030901(R) (2004).

    Article  ADS  Google Scholar 

  34. Wildermuth, S. et al. Microscopic magnetic-field imaging. Nature 435, 440 (2005).

    Article  ADS  Google Scholar 

  35. Krüger, P. et al. Disorder potentials near lithographically fabricated atom chips. Preprint at <http://arxiv.org/abs/cond-mat/0504686> (2005).

Download references

Acknowledgements

We would like to thank Thorsten Schumm for stimulating discussions and we are grateful to Peter Krüger for critical reading of the manuscript. The atom chip used in this experiment was fabricated at the Weizman Institut of Science by S. Groth. We acknowledge financial support from the European Union, through the contracts IST-2001-38863 (ACQP), MRTN-CT-2003-505032 (Atom Chips), Integrated Project FET/QIPC ‘SCALA’, and the Deutsche Forschungsgemeinschaft, contract number SCHM 1599/1-1. I.L. acknowledges support from the European Community and its 6th Community Frame (program of Scholarships of Distinction ‘Marie Curie’).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Hofferberth or J. Schmiedmayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofferberth, S., Lesanovsky, I., Fischer, B. et al. Radiofrequency-dressed-state potentials for neutral atoms. Nature Phys 2, 710–716 (2006). https://doi.org/10.1038/nphys420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys420

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing