Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin conversion on the nanoscale

Abstract

Spins can act as mediators to interconvert electricity, light, sound, vibration and heat. Here, we give an overview of the recent advances in different sub-disciplines of spintronics that can be associated with the developing field of spin conversion, and discuss future prospects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual illustration of nano-spin-conversion science.

Similar content being viewed by others

References

  1. Barnett, S. J. Magnetization by rotation. Phys. Rev. 6, 239–270 (1915).

    ADS  Google Scholar 

  2. Einstein, A. & de Haas, W. J. Experimental proof of the existence of Ampere’s molecular currents. Verh. Dtsch. Phys. Ges. 17, 152–170 (1915).

    Google Scholar 

  3. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    ADS  Google Scholar 

  4. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effect. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  5. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    ADS  Google Scholar 

  6. Flipse, J. et al. Observation of the spin Peltier effect for magnetic insulators. Phys. Rev. Lett. 113, 027601 (2014).

    ADS  Google Scholar 

  7. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    ADS  Google Scholar 

  8. Maruyama, T. et al. Large voltage induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotech. 4, 158–161 (2009).

    ADS  Google Scholar 

  9. Rojas-Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).

    ADS  Google Scholar 

  10. Li, C. H. et al. Electrical detection of charge-current-induced spin polarization due to spinmomentum locking in Bi2Se3 . Nat. Nanotech. 9, 218–224 (2014).

    ADS  Google Scholar 

  11. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    ADS  Google Scholar 

  12. Saitoh, E., Ueda, M. & Miyajima, H. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    ADS  Google Scholar 

  13. Yang, T., Kimura, T. & Otani, Y. Giant spin-accumulation signal and pure spincurrent-induced reversible magnetization switching. Nat. Phys. 4, 851–854 (2008).

    Google Scholar 

  14. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    ADS  Google Scholar 

  15. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    ADS  Google Scholar 

  16. Shiota, Y. et al. Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Exp. 2, 063001 (2009).

    ADS  Google Scholar 

  17. Fukuma, Y. et al. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nat. Mater. 10, 527–531 (2011).

    ADS  Google Scholar 

  18. Appelbaum, I., Huang, B. & Monsma, J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    ADS  Google Scholar 

  19. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nat. Phys. 3, 197–202 (2007).

    Google Scholar 

  20. Dushenko, S. et al. Experimental demonstration of room-temperature spin transport in n-type germanium epilayers. Phys. Rev. Lett. 114, 196602 (2015).

    ADS  Google Scholar 

  21. Tombros, N., Csaba, J. C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    ADS  Google Scholar 

  22. Sasaki, T. et al. Spin transport in nondegenerate Si with a spin MOSFET structure at room temperature. Phys. Rev. Appl. 2, 034005 (2014).

    ADS  Google Scholar 

  23. Vera-Marun, I. J., Ranjan, V. & van Wees, B. J. Nonlinear detection of spin currents in graphene with non-magnetic electrodes. Nat. Phys. 8, 313–316 (2012).

    Google Scholar 

  24. Okamoto, N. et al. Electric control of the spin Hall effect by intervalley transitions. Nat. Mater. 13, 932–937 (2014).

    ADS  Google Scholar 

  25. Wakamura, T. et al. Quasiparticle-mediated spin Hall effect in a superconductor. Nat. Mater. 14, 675–678 (2015).

    ADS  Google Scholar 

  26. Karube, S., Kondou, K. & Otani, Y. Experimental observation of spin-to-charge current conversion at non-magnetic metal/Bi2O3 interfaces. Appl. Phys. Exp. 9, 033001 (2016).

    ADS  Google Scholar 

  27. Ando, Y. et al. Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi1.5Sb0.5Te1.7Se1.3 . Nano Lett. 14, 6226–6230 (2014).

    ADS  Google Scholar 

  28. Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

    ADS  Google Scholar 

  29. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulse. Nature 435, 655–657 (2005).

    Article  ADS  Google Scholar 

  30. Kimel, A. V., Kirilyuk, A. & Rasing, Th. Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials. Laser Photon. Rev. 1, 275–287 (2007).

    ADS  Google Scholar 

  31. Kirilyuk, A., Kimel, A. V. & Rasing, Th. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    ADS  Google Scholar 

  32. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).

    ADS  Google Scholar 

  33. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    ADS  Google Scholar 

  34. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J. Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    ADS  Google Scholar 

  35. Malinowski, G. et al. Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nat. Phys. 4, 855–858 (2008).

    Google Scholar 

  36. Eschenlohr, A. et al. Ultrafast spin transport as key to femtosecond demagnetization. Nat. Mater. 12, 332–336 (2013).

    ADS  Google Scholar 

  37. Schellekens, A. J., Kuiper, K. C., de Wit, R. R. J. C. & Koopmans, B. Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation. Nat. Commun. 5, 4333 (2014).

    ADS  Google Scholar 

  38. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    ADS  Google Scholar 

  39. Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    ADS  Google Scholar 

  40. Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–409 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  41. Kosaka, H. et al. Coherent transfer of light polarization to electron spins in a semiconductor. Phys. Rev. Lett. 100, 096602 (2008).

    ADS  Google Scholar 

  42. Greve, K., De Press, D., McMahon, P. L. & Yamamoto, Y. Ultrafast optical control of individual quantum dot spin qubits. Rep. Prog. Phys. 76, 092501 (2013).

    ADS  Google Scholar 

  43. Pioda, A. et al. Single-shot detection of trapping and resetting single electrons generated by single photons in a lateral quantum dot. Phys. Rev. Lett. 106, 146804 (2011).

    ADS  Google Scholar 

  44. Žutić, I., Oszwałdowski, R., Lee, J. & Gøtheng, C. in Handbook of Spin Transport and Magnetism (eds Tsymbal, E. Y. & Žutic, I.) 731–745 (CRC Press, 2011).

    Google Scholar 

  45. Bauer, G. E., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    ADS  Google Scholar 

  46. Xiao, J., Bauer, G. E., Uchida, K., Saitoh, E. & Maekawa, S. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

    ADS  Google Scholar 

  47. Adachi, H., Ohe, J., Takahashi, S. & Maekawa, S. Linear response theory of spin Seebeck effect in ferromagnetic insulators. Phys Rev. B 83, 094410 (2011).

    ADS  Google Scholar 

  48. Flipse, J. et al. Observation of the spin Peltier effect for magnetic insulators. Phys. Rev. Lett. 113, 027601 (2014).

    ADS  Google Scholar 

  49. Slachter, A., Bakker, F. L., Adam, J. P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat. Phys. 6, 879–882 (2010).

    Google Scholar 

  50. Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nat. Nanotech. 7, 166–168 (2012).

    ADS  Google Scholar 

  51. Chudo, H. et al. Observation of Barnett field in solids by nuclear magnetic resonance. Appl. Phys. Exp. 7, 063004 (2014).

    ADS  Google Scholar 

  52. Zolfagharkhani, G. et al. Nanomechanical detection of itinerant electron spin flip. Nat. Nanotech. 3, 720–723 (2008).

    ADS  Google Scholar 

  53. Losby, J. E. et al. Torque-mixing magnetic resonance spectroscopy. Science 350, 798–801 (2015).

    ADS  Google Scholar 

  54. Takahashi, R. et al. Spin hydrodynamic generation. Nat. Phys. 12, 52–56 (2016).

    Google Scholar 

  55. Yoda, T., Yokoyama, T. & Murakami, S. Current-induced orbital and spin magnetizations in crystals with helical structure. Sci. Rep. 5, 12024 (2015).

    ADS  Google Scholar 

  56. Katsura, H., Nagaosa, N. & Lee, P. A. Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010).

    ADS  Google Scholar 

  57. Tatara, G. Thermal vector potential theory of transport induced by a temperature gradient. Phys. Rev. Lett. 114, 196601 (2015).

    ADS  Google Scholar 

  58. Wakatsuki, R., Ezawa, M. & Nagaosa, N. Domain wall of a ferromagnet on a three-dimensional topological insulator. Sci. Rep. 5, 13638 (2015).

    ADS  Google Scholar 

  59. Satoh, T. et al. Directional control of spin-wave emission by spatially shaped light. Nat. Photon. 6, 662–666 (2012).

    ADS  Google Scholar 

  60. Shen, K. & Bauer, G. E. W. Laser-induced spatiotemporal dynamics of magnetic films. Phys. Rev. Lett. 115, 197201 (2015).

    ADS  Google Scholar 

  61. Hirschberger, M., Krizan, J. W., Cava, R. J. & Ong, N. P. Large thermal Hall conductivity of neutral spin excitations in a frustrated quantum magnet. Science 348, 106–109 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research on Innovative Area, ‘Nano Spin Conversion Science’ (Grant Numbers 26103002, 26103003, 26103004, 26103005 and 26103006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YoshiChika Otani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otani, Y., Shiraishi, M., Oiwa, A. et al. Spin conversion on the nanoscale. Nature Phys 13, 829–832 (2017). https://doi.org/10.1038/nphys4192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing