Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Full quantum distribution of contrast in interference experiments between interacting one-dimensional Bose liquids

Abstract

The existence of quantum noise is the most direct evidence for the probabilistic nature of quantum mechanics. In strongly interacting systems we expect quantum noise to reveal non-local correlations of the underlying many-body states. Here, we show that quantum noise in interference experiments with cold atoms can be used to investigate the unusual character of one-dimensional interacting systems. We analyse interference experiments for a pair of independent bosonic one-dimensional condensates and explicitly calculate the distribution function of fringe amplitudes using methods of conformal field theory. Moreover, we point out interesting relations between interference experiments with cold atoms, the problem of a quantum impurity in a one-dimensional Luttinger liquid and a variety of statistical models ranging from stochastic growth models to two-dimensional quantum gravity. Such connections can be exploited to design a quantum simulator of unusual two-dimensional models described by non-unitary conformal field theories with negative central charges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical experimental scheme.
Figure 2: Small K distribution function.
Figure 3: Large K distribution function.
Figure 4: Central charges.

Similar content being viewed by others

References

  1. Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).

    Article  Google Scholar 

  2. Polkovnikov, A., Altman, E. & Demler, E. Interference between independent fluctuating condensates. Proc. Natl Acad. Sci. 103, 6125–6129 (2006).

    Article  ADS  Google Scholar 

  3. Glauber, R. J. Photon correlations. Phys. Rev. Lett. 10, 84–86 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  4. Blanter, Ya. M. & Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000).

    Article  ADS  Google Scholar 

  5. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005).

    Article  ADS  Google Scholar 

  6. Schellekens, M. et al. Hanbury Brown Twiss effect for ultracold quantum gases. Science 310, 648–651 (2005).

    Article  ADS  Google Scholar 

  7. Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).

    Article  ADS  Google Scholar 

  8. Greiner, M., Regal, C. A. & Jin, D. S. Fermi condensates. Preprint at <http://www.arxiv.org/cond-mat/0502539> (2005).

  9. Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    Article  ADS  Google Scholar 

  10. Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J. B. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).

    Article  ADS  Google Scholar 

  11. Levitov, L. S. in Quantum Noise in Mesoscopic Systems (ed. Nazarov, Yu. V.) Ch. III (Kluwer, Dordrecht, 2003).

    Google Scholar 

  12. Kane, C. L. & Fisher, M. P. A. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B 46, 15233–15262 (1992).

    Article  ADS  Google Scholar 

  13. Fendley, P., Lesage, F. & Saleur, H. A unified framework for the Kondo problem and for an impurity in a Luttinger liquid. J. Stat. Phys. 85, 211–249 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  14. Caldeira, A. O. & Leggett, A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981).

    Article  ADS  Google Scholar 

  15. DiFrancesco, P., Mathieu, P. & Senechal, D. Conformal Field Theory (Springer, New York, 1999).

    Google Scholar 

  16. Schumm, T. Matter-wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005).

    Article  ADS  Google Scholar 

  17. Niu, Q., Carusotto, I. & Kuklov, A. B. Imaging of critical correlations in optical lattices and atomic traps. Phys. Rev. A 73, 053604 (2006).

    Article  ADS  Google Scholar 

  18. Cazalilla, M. Bosonizing one-dimensional cold atomic gases. J. Phys. B 37, S1–S48 (2004).

    Article  ADS  Google Scholar 

  19. Affleck, I., Hofstetter, W., Nelson, D. R. & Schollwock, U. Non-Hermitian Luttinger liquids and flux line pinning in planar superconductors. J. Stat. Mech. P1003 (2004).

  20. Fendley, P., Lesage, F. & Saleur, H. Solving 1D plasmas and 2D boundary problems using Jack polynomials and functional relations. J. Stat. Phys. 79, 799–819 (1995).

    Article  ADS  Google Scholar 

  21. Bazhanov, V., Lukyanov, S. & Zamolodchikov, A. On non-equilibrium states in QFT model with boundary interaction. Nucl. Phys. B 549, 529–545 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  22. Bazhanov, V. V., Lukyanov, S. L. & Zamolodchikov, A. B. Integrable structure of conformal field theory. Commun. Math. Phys. 177, 381–398 (1996); ibid 190, 247–278 (1997); ibid 200,297–324 (1999).

    Article  ADS  Google Scholar 

  23. Dorey, P. & Tateo, R. Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations. J. Phys. A 32, L419 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  24. Bazhanov, V. V., Lukyanov, S. L. & Zamolodchikov, A. B. Spectral determinants for Schrödinger equation and q-operators of conformal field theory. J. Stat. Phys. 102, 567–576 (2001).

    Article  ADS  Google Scholar 

  25. Bertin, E. & Clusel, M. Generalized extreme value statistics and sum of correlated variables. J. Phys. A 39, 7607–7620 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  26. Bender, C. M., Jones, H. F. & Rivers, R. J. Dual PT-symmetric quantum field theories. Phys. Lett. B 625, 333–340 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  27. Nienhuis, B. Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062–1065 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  28. Cardy, J. SLE for theoretical physicists. Ann. Phys. 318, 81–118 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  29. Ellis, J. & Mavromatos, N. E. High-energy QCD as a topological field theory. Eur. Phys. J. C 8, 91–102 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  30. Lipatov, L. N. Hamiltonian for Reggeon interactions in QCD. Phys. Rep. 320, 249–260 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to I. Affleck, C. Bender, P. Fendley, V. M. Galitski, M. Greiner, Z. Hadzibabic, H. Katzgraber, M. Lukin, S. L. Lukyanov, M. Oberthaller, M. Oshikawa, M. Pletyukhov, J. Schmiedmayer, V. Vuletic, D. Weiss, K. Yung and A. B. Zamolodchikov for useful discussions. V.G. is supported by the Swiss National Science Foundation, grant PBFR2-110423. E.A. is partially supported by the US–Israel BSF and the Alon fellowship. E.D. and A.P. are partially supported by the NSF grant DMR-0132874.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gritsev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gritsev, V., Altman, E., Demler, E. et al. Full quantum distribution of contrast in interference experiments between interacting one-dimensional Bose liquids. Nature Phys 2, 705–709 (2006). https://doi.org/10.1038/nphys410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing