Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cosmic-ray diffusion near the Bohm limit in the Cassiopeia A supernova remnant

Abstract

The acceleration of cosmic rays in our Galaxy by means of diffusive shock (Fermi) acceleration is believed to occur primarily in supernova remnants (SNRs). Despite considerable theoretical work, the precise details are still unknown, in part because of the difficulty in directly observing nucleons that are accelerated to TeV energies in—and affect the structure of—SNR shocks. However, for the past ten years, X-ray observatories such as ASCA (Advanced Satellite for Cosmology and Astrophysics) and, more recently, Chandra, XMM-Newton and Suzaku, have made it possible to image the keV-scale synchrotron emission produced by cosmic-ray electrons accelerated in SNR shocks. Here, we describe a spatially resolved spectroscopic analysis of Chandra observations of the Galactic SNR Cassiopeia A to map the cutoff frequencies of electrons accelerated in the forward shock. We set upper limits on the diffusion coefficient and find locations where particles seem to be accelerated nearly as fast as theoretically possible (the Bohm limit).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Cassiopeia A supernova remnant as observed by Chandra.
Figure 2: Cas A bremsstrahlung temperature map.
Figure 3: Spectral types in Cas A.
Figure 4: Cutoff frequencies and upper limits on the electron diffusion coefficient in the Cassiopeia A supernova remnant.
Figure 5: Non-thermal continuum spectrum of the 2′′ by 2′′ region on the northeast shock (α=23:23:42.2,δ=58:50:26.4).

Similar content being viewed by others

References

  1. Baade, W. & Zwicky, F. Cosmic rays from super-novae. Proc. Natl Acad. Sci. 20, 259–263 (1934).

    Article  ADS  Google Scholar 

  2. Ginzburg, V. L. & Syrovatskii, S. I. The Origin of Cosmic Rays (Gordon and Breach, New York, 1969).

    Google Scholar 

  3. Krymskii, G. F. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk SSSR Dokl. 234, 1306–1308 (1977).

    ADS  Google Scholar 

  4. Bell, A. R. The acceleration of cosmic rays in shock fronts—I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978).

    Article  ADS  Google Scholar 

  5. Bell, A. R. The acceleration of cosmic rays in shock fronts—II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978).

    Article  ADS  Google Scholar 

  6. Blandford, R. D. & Ostriker, J. P. Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29–L32 (1978).

    Article  ADS  Google Scholar 

  7. Drury, L. On particle acceleration in supernova remnants. Space Sci. Rev. 36, 57–60 (1983).

    Article  ADS  Google Scholar 

  8. Jones, F. C. & Ellison, D. C. The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991).

    Article  ADS  Google Scholar 

  9. Reynolds, S. P. Models of synchrotron X-rays from shell supernova remnants. Astrophys. J. 493, 375–396 (1998).

    Article  ADS  Google Scholar 

  10. Ellison, D. C., Berezhko, E. G. & Baring, M. G. Nonlinear shock acceleration and photon emission in supernova remnants. Astrophys. J. 540, 292–307 (2000).

    Article  ADS  Google Scholar 

  11. Biermann, P. L. & Sigl, G. in Physics and Astrophysics of Ultra-High-Energy Cosmic Rays 1–26 (LNP, Vol. 576, Springer, Berlin, 2001).

    Book  Google Scholar 

  12. Baring, M. G., Ellison, D. C., Reynolds, P. S., Grenier, I. A. & Goret, P. Radio to gamma-ray emission from shell-type supernova remnants: Predictions from nonlinear shock acceleration models. Astrophys. J. 513, 311–338 (1999).

    Article  ADS  Google Scholar 

  13. Bell, A. R. & Lucek, S. G. Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433–438 (2001).

    Article  ADS  Google Scholar 

  14. Ellison, D. C. & Cassam-Chenai, G. Radio and X-ray profiles in supernova remnants undergoing efficient cosmic-ray production. Astrophys. J. 632, 920–931 (2005).

    Article  ADS  Google Scholar 

  15. Ellison, D. C., Decourchelle, A. & Ballet, J. Nonlinear particle acceleration at reverse shocks in supernova remnants. Astron. Astrophys. 429, 569–580 (2005).

    Article  ADS  Google Scholar 

  16. Pühlhofer, G., Völk, H. & Wiedner, C. A. Hegra Collaboration. in Proc. 26th Int. Cosmic Ray Conf. Vol. 3, 492–495 (American Institute of Physics, Utah, 1999).

    Google Scholar 

  17. Aharonian, F. et al. Evidence for TeV gamma ray emission from Cassiopeia A. Astron. Astrophys. 370, 112–120 (2001).

    Article  ADS  Google Scholar 

  18. Muraishi, H. et al. Evidence for TeV gamma-ray emission from the shell type SNR RX J1713.7-3946. Astron. Astrophys. 354, L57–L61 (2000).

    ADS  Google Scholar 

  19. Enomoto, R. et al. The acceleration of cosmic-ray protons in the supernova remnant RX J1713. 7-3946. Nature 416, 823–826 (2002).

    Article  ADS  Google Scholar 

  20. Aharonian, F. A. et al. High-energy particle acceleration in the shell of a supernova remnant. Nature 432, 75–77 (2004).

    Article  ADS  Google Scholar 

  21. Aharonian, F. et al. Detection of TeV γ-ray emission from the shell-type supernova remnant RX J0852.0-4622 with HESS. Astron. Astrophys. 437, L7–L10 (2005).

    Article  ADS  Google Scholar 

  22. Katagiri, H. et al. Detection of gamma rays around 1 TeV from RX J0852.0-4622 by Cangaroo-II. Astrophys. J. 619, L163–L166 (2005).

    Article  ADS  Google Scholar 

  23. Aharonian, F. et al. Very high energy gamma rays from the composite SNR G 0.9+0.1. Astron. Astrophys. 432, L25–L29 (2005).

    Article  ADS  Google Scholar 

  24. Koyama, K. et al. Evidence for shock acceleration of high energy electrons in the supernova remnant SN:1006. Nature 378, 255–256 (1995).

    Article  ADS  Google Scholar 

  25. Weisskopf, M. C. et al. An overview of the performance and scientific results from the Chandra X-ray Observatory. Pub. Astron. Soc. Pac. 114, 1–24 (2002).

    Article  ADS  Google Scholar 

  26. Lazendic, J. S. et al. A high resolution study of nonthermal radio and X-ray emission from supernova remnant G347.3-0.5. Astrophys. J. 602, 271–285 (2004).

    Article  ADS  Google Scholar 

  27. Warren, J. et al. Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: Evidence from Chandra X-ray observations. Astrophys. J. 634, 376–389 (2005).

    Article  ADS  Google Scholar 

  28. Houck, J. C. & Denicola, L. A. in Astronomical Data Analysis Software and Systems IX 591–594 (ASP Conf. Ser., Vol. 216, Astronomical Society of the Pacific, San Francisco, 2000).

    Google Scholar 

  29. Hwang, U. et al. A million second Chandra view of Cassiopeia A. Astrophys. J. 615, L117–L120 (2004).

    Article  ADS  Google Scholar 

  30. Davis, J. E., Houck, J. C., Allen, G. E & Stage, M. D. in Astronomical Data Analysis Software and Systems XIV (ASP Conf. Ser. 2.3-1–2.3-4, Vol. 347, Astronomical Society of the Pacific, San Francisco, 2005).

    Google Scholar 

  31. Keohane, J. W., Rudnick, L. & Anderson, M. C. A comparison of X-ray and radio emission from the supernova remnant Cassiopeia A. Astrophys. J. 466, 309–316 (1996).

    Article  ADS  Google Scholar 

  32. Gotthelf, E. et al. Chandra detection of the forward and reverse shocks in Cassiopeia A. Astrophys. J. 552, L39–L43 (2001).

    Article  ADS  Google Scholar 

  33. Allen, G. E. et al. Evidence of X-ray synchrotron emission from electrons accelerated to 40 TeV in the supernova remnant Cassiopeia A. Astrophys. J. 497, L97–L100 (1997).

    Article  ADS  Google Scholar 

  34. Laming, J. M. Accelerated electrons in Cassiopeia A: An explanation for the hard X-ray tail. Astrophys. J. 546, 1149–1158 (2001).

    Article  ADS  Google Scholar 

  35. Bleeker, J. A. M. et al. Cassiopeia A: On the origin of the hard X-ray continuum and the implication of the observed OVIII Ly-α/Ly-β distribution. Astron. Astrophys. 365, L225–L230 (2001).

    Article  ADS  Google Scholar 

  36. Vink, J. & Laming, J. M. On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys. J. 584, 758–769 (2003).

    Article  ADS  Google Scholar 

  37. Protheroe, R. J. Effect of energy losses and interactions during diffusive shock acceleration: Applications to SNR, AGN and UHE cosmic rays. Astropart. Phys. 21, 415–431 (2004).

    Article  ADS  Google Scholar 

  38. Berezhko, E. G. & Völk, H. J. Direct evidence of efficient cosmic ray acceleration and magnetic field amplification in Cassiopeia A. Astron. Astrophys. 419, L27–L30 (2004).

    Article  ADS  Google Scholar 

  39. Völk, H. J., Berezhko, E. G. & Ksenofontov, L. T. K. Magnetic field amplification in Tycho and other shell-type supernova remnants. Astron. Astrophys. 433, 229–240 (2005).

    Article  ADS  Google Scholar 

  40. Houck, J. C. & Allen, G. E. Models for nonthermal photon spectra. Astrophys. J. in the press; preprint at <http://xxx.lanl.gov/abs/astro-ph/0607574> (2006).

  41. Jones, T. J., Rudnick, L., DeLaney, T. & Bowden, J. The identification of infrared synchrotron radiation from Cassiopeia A. Astrophys. J. 587, 227–234 (2003).

    Article  ADS  Google Scholar 

  42. Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K. & Witzel, A. The absolute spectrum of Cas A; an accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106 (1977).

    ADS  Google Scholar 

  43. Pohl, M., Yan, H. & Lazarian, A. Magnetically limited X-ray filaments in young supernova remnants. Astrophys. J. 626, L101–104 (2005).

    Article  ADS  Google Scholar 

  44. Bamba, A., Yamazaki, R., Ueno, M. & Koyama, K. Small-scale structure of the SN 1006 shock with Chandra observations. Astrophys. J. 589, 827–837 (2003).

    Article  ADS  Google Scholar 

  45. Pannuti, T. G., Allen, G. E., Houck, J. C. & Sturner, S. J. RXTE, ROSAT, and ASCA observations of G347.3-0.5 (RX J1713.7-3946): Probing cosmic-ray acceleration by a galactic shell-type supernova remnant. Astrophys. J. 593, 377–392 (2003).

    Article  ADS  Google Scholar 

  46. Rothenflug, R. et al. Geometry of the non-thermal emission in SN 1006: Azimuthal variations of cosmic-ray acceleration. Astron. Astrophys. 425, 121–131 (2004).

    Article  ADS  Google Scholar 

  47. Vink, J. Proc. Symp: The X-Ray Universe (ESA, Noordwijk, 2006).

    Google Scholar 

  48. Bamba, A., Yamazki, R. & Hiraga, J. S. A spatial and spectral study of nonthermal filaments in historical supernova remnants: Observational results with Chandra. Astrophys. J. 621, 793–802 (2005).

    Article  ADS  Google Scholar 

  49. DeLaney, T. & Rudnick, L. The first measurement of Cassiopeia A’s forward shock expansion rate. Astrophys. J. 589, 818–826 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.D.S. and G.E.A. thank T. Delaney and L. Rudnick for sharing unpublished radio spectral index data of Cas A to help us in determining a reasonable choice of Γ for the forward shock. This work was supported in part by NASA LTSA grant NAG5-9237 and the Five College Astronomy Department Fellowship program.

Author information

Authors and Affiliations

Authors

Contributions

This research project was conceived and designed by all of the authors. The research and writing was primarily by M.D.S. and the scientific analysis and interpretation primarily by M.D.S. and G.E.A. Design of the spectral models was primarily by J.C.H. and G.E.A. Design and creation of the distributed spectral fitting and mapping software was primarily by J.C.H. and the new data reduction and processing tools were created primarily by J.E.D.

Corresponding author

Correspondence to M. D. Stage.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stage, M., Allen, G., Houck, J. et al. Cosmic-ray diffusion near the Bohm limit in the Cassiopeia A supernova remnant. Nature Phys 2, 614–619 (2006). https://doi.org/10.1038/nphys391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing