Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge noise and spin noise in a semiconductor quantum device

Abstract

Improving the quantum coherence of solid-state systems that mimic two-level atoms, for instance spin qubits or single-photon emitters using semiconductor quantum dots, involves dealing with the noise inherent to the device. Charge noise results in a fluctuating electric field, spin noise in a fluctuating magnetic field at the location of the qubit, and both can lead to dephasing and decoherence of optical and spin states. We investigate noise in an ultrapure semiconductor device using a minimally invasive, ultrasensitive local probe: resonance fluorescence from a single quantum dot. We distinguish between charge noise and spin noise through a crucial difference in their optical signatures. Noise spectra for both electric and magnetic fields are derived from 0.1 Hz to 100 kHz. The charge noise dominates at low frequencies, spin noise at high frequencies. The noise falls rapidly with increasing frequency, allowing us to demonstrate transform-limited quantum-dot optical linewidths by operating the device above 50 kHz.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RF on a single quantum dot.
Figure 2: RF noise.
Figure 3: Distinguishing between charge noise and spin noise.
Figure 4: Noise spectra of local electric and magnetic fields.
Figure 5: Noise and above-bandgap excitation.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    ADS  Google Scholar 

  2. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  3. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    Article  ADS  Google Scholar 

  4. Fischer, J. & Loss, D. Dealing with decoherence. Science 324, 1277–1278 (2009).

    Google Scholar 

  5. Högele, A. et al. Voltage-controlled optics of a quantum dot. Phys. Rev. Lett. 93, 217401 (2004).

    Article  ADS  Google Scholar 

  6. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  7. Houel, J. et al. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Phys. Rev. Lett. 108, 107401 (2012).

    Article  ADS  Google Scholar 

  8. Klotz, F. et al. Observation of an electrically tunable exciton g factor in InGaAs/GaAs quantum dots. Appl. Phys. Lett. 96, 053113 (2010).

    Article  ADS  Google Scholar 

  9. Pingenot, J., Pryor, C. E. & Flatte, M. E. Electric-field manipulation of the Lande g tensor of a hole in an In(0.5)Ga(0.5)As/GaAs self-assembled quantum dot. Phys. Rev. B 84, 195403 (2011).

    Article  ADS  Google Scholar 

  10. Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  ADS  Google Scholar 

  11. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  12. Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

    Article  ADS  Google Scholar 

  13. Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008).

    Article  ADS  Google Scholar 

  14. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  15. Barthel, C., Medford, J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Interlaced dynamical decoupling and coherent operation of a singlet–triplet qubit. Phys. Rev. Lett. 105, 266808 (2010).

    Article  ADS  Google Scholar 

  16. De Lange, G., Wang, Z. H., Riste, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  ADS  Google Scholar 

  17. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2011).

    Article  ADS  Google Scholar 

  18. Matthiesen, C., Vamivakas, A. N. & Atatúre, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

    Article  ADS  Google Scholar 

  19. Nguyen, H. S. et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

    Article  ADS  Google Scholar 

  20. Urbaszek, B. et al. Nuclear spin physics in quantum dots: An optical investigation.Rev. Mod. Phys. 85, 79–133 (2013).

    Article  ADS  Google Scholar 

  21. Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).

    Article  ADS  Google Scholar 

  22. Reilly, D. J. et al. Measurement of temporal correlations of the overhauser field in a double quantum dot. Phys. Rev. Lett. 101, 236803 (2008).

    Article  ADS  Google Scholar 

  23. Fink, T. & Bluhm, H. Noise spectroscopy using correlations of single-shot qubit readout. Phys. Rev. Lett. 110, 010403 (2013).

    Article  ADS  Google Scholar 

  24. Crooker, S. A. & Bluhm, H. Spin noise of electrons and holes in self-assembled quantum dots. Phys. Rev. Lett. 104, 036601 (2010).

    Article  ADS  Google Scholar 

  25. Alen, B., Bickel, F., Karrai, K., Warburton, R. J. & Petroff, P. M. Stark-shift modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 83, 2235–2237 (2003).

    Article  ADS  Google Scholar 

  26. Vamivakas, A. N. et al. Nanoscale optical electrometer. Phys. Rev. Lett. 107, 166802 (2011).

    Article  ADS  Google Scholar 

  27. Coish, W. A. & Baugh, J. Nuclear spins in nanostructures. Phys. Stat. Sol. B 246, 2203–2215 (2009).

    Article  ADS  Google Scholar 

  28. Kloeffel, C. et al. Controlling the interaction of electron and nuclear spins in a tunnel-coupled quantum dot. Phys. Rev. Lett. 106, 046802 (2011).

    Article  ADS  Google Scholar 

  29. Dalgarno, P. A. et al. Coulomb interactions in single charged self-assembled quantum dots: Radiative lifetime and recombination energy. Phys. Rev. B 77, 245311 (2008).

    Article  ADS  Google Scholar 

  30. Machlup, S. Noise in semiconductors—spectrum of a 2-parameter random signal. J. Appl. Phys. 25, 341–343 (1954).

    Article  ADS  Google Scholar 

  31. Berthelot, A. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nature Phys. 2, 759–769 (2006).

    Article  ADS  Google Scholar 

  32. Yilmaz, S. T., Fallahi, P. & Imamoglu, A. Quantum-dot-spin single-photon interface. Phys. Rev. Lett. 105, 033601 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from NCCR QSIT. We thank B. Coish, C. Kloeffel, D. Loss and S. Starosielec for helpful discussions; S. Martin and M. Steinacher for technical support. A.L., D.R. and A.D.W. acknowledge gratefully support from DFG SPP1285 and BMBF QuaHLRep 01BQ1035.

Author information

Authors and Affiliations

Authors

Contributions

A.V.K. and J.H. performed the experiments and data analysis with M.P. providing electronics and software expertise. A.L., D.R. and A.D.W. carried out the molecular beam epitaxy; L.G. and A.L. the sample processing. A.V.K. and R.J.W. took the lead in writing the paper. R.J.W. conceived, led and managed the entire project.

Corresponding author

Correspondence to Andreas V. Kuhlmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 744 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlmann, A., Houel, J., Ludwig, A. et al. Charge noise and spin noise in a semiconductor quantum device. Nature Phys 9, 570–575 (2013). https://doi.org/10.1038/nphys2688

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2688

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing