Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Timing the release in sequential double ionization

Abstract

The timing of electron release in strong-field double ionization poses great challenges both for conceptual definition and for conducting experimental measurements. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of argon using elliptically polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. This paper discusses how this method provides timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. We found that the ionization time of the first electron is in good agreement with the simulation, whereas the ionization of the second electron occurs significantly earlier than predicted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bifurcation of the ion momentum distribution.
Figure 2: The hands of the attoclock.
Figure 3: The ionization times of the first and the second released electron.
Figure 4: Coincidence spectra.

Similar content being viewed by others

References

  1. Eckle, P. et al. Attosecond angular streaking. Nature Phys. 4, 565–570 (2008).

    Article  Google Scholar 

  2. Eckle, P. et al. Attosecond ionization and tunnelling delay time measurements in helium. Science 322, 1525–1529 (2008).

    Article  ADS  Google Scholar 

  3. Weber, T. et al. Correlated electron emission in multiphoton double ionization. Nature 405, 658–661 (2000).

    Article  ADS  Google Scholar 

  4. Rudenko, A. et al. Correlated multielectron dynamics in ultrafast laser pulse interactions with atoms. Phys. Rev. Lett. 93, 253001 (2004).

    Article  ADS  Google Scholar 

  5. Becker, W. & Rottke, H. Many-electron strong-field physics. Contemp. Phys. 49, 199–223 (2008).

    Article  ADS  Google Scholar 

  6. Dörner, R. et al. in Advances in Atomic, Molecular, and Optical Physics, Vol. 48 (eds Bederson, B. & Walther, H.) 1–34 (Academic, 2002).

    Book  Google Scholar 

  7. Maharjan, C. M. et al. Momentum imaging of doubly charged ions of Ne and Ar in the sequential ionization region. Phys. Rev. A 72, 041403 (2005).

    Article  ADS  Google Scholar 

  8. Smolarski, M., Eckle, P., Keller, U. & Dörner, R. Semiclassical model for attosecond angular streaking. Opt. Express 18, 17640–17650 (2010).

    Article  ADS  Google Scholar 

  9. Wang, X. & Eberly, J. H. Effects of elliptical polarization on strong-field short-pulse double ionization. Phys. Rev. Lett. 103, 103007 (2009).

    Article  ADS  Google Scholar 

  10. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  11. Tong, X. M. & Lin, C. D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. J. Phys. B 38, 2593–2600 (2005).

    Article  ADS  Google Scholar 

  12. Haessler, S. et al. Phase-resolved attosecond near-threshold photoionization of molecular nitrogen. Phys. Rev. A 80, 011404 (2009).

    Article  ADS  Google Scholar 

  13. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  ADS  Google Scholar 

  14. Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article  ADS  Google Scholar 

  15. Litvinyuk, I. V. et al. Shakeup excitation during optical tunnel ionization. Phys. Rev. Lett. 94, 033003 (2005).

    Article  ADS  Google Scholar 

  16. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  17. Taieb, R., Veniard, V. & Maquet, A. Photoelectron spectra from multiple ionization of atoms in ultra-intense laser pulses. Phys. Rev. Lett. 87, 053002 (2001).

    Article  ADS  Google Scholar 

  18. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  19. Walters, Z. B. & Smirnova, O. Attosecond correlation dynamics during electron tunnelling from molecules. J. Phys. B 43, 161002 (2010).

    Article  ADS  Google Scholar 

  20. Gillen, G. D., Walker, M. A. & Van Woerkom, L. D. Enhanced double ionization with circularly polarized light. Phys. Rev. A 64, 043413 (2001).

    Article  ADS  Google Scholar 

  21. Fittinghoff, D. N., Bolton, P. R., Chang, B. & Kulander, K. C. Observation of nonsequential double ionization of helium with optical tunneling. Phys. Rev. Lett. 69, 2642–2645 (1992).

    Article  ADS  Google Scholar 

  22. Mauger, F., Chandre, C. & Uzer, T. Recollisions and correlated double ionization with circularly polarized light. Phys. Rev. Lett. 105, 083002 (2010).

    Article  ADS  Google Scholar 

  23. Wang, X. & Eberly, J. H. Elliptical polarization and probability of double ionization. Phys. Rev. Lett. 105, 083001 (2010).

    Article  ADS  Google Scholar 

  24. Hauri, C. P. et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B 79, 673–677 (2004).

    Article  ADS  Google Scholar 

  25. Dörner, R. et al. Cold target recoil ion momentum spectroscopy: A ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NCCR Quantum Photonics (NCCR QP), a research instrument of the Swiss National Science Foundation (SNSF), by ETH Research Grant ETH-03 09-2 and by the SNSF R’Equip grant 206021_128551/1. R.D. acknowledges support by a Koselleck Project of the Deutsche Forschungsgemeinschaft. We thank H. J. Wörner for enlightening discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.N.P. and C.C. performed the experiments. A.N.P. analysed the data and implemented the simulation. All authors were involved in the interpretation. A.N.P., R.D. and U.K. wrote the manuscript.

Corresponding author

Correspondence to Adrian N. Pfeiffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 488 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, A., Cirelli, C., Smolarski, M. et al. Timing the release in sequential double ionization. Nature Phys 7, 428–433 (2011). https://doi.org/10.1038/nphys1946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing