Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gate-dependent spin–orbit coupling in multielectron carbon nanotubes

Abstract

Understanding how the orbital motion of electrons is coupled to the spin degree of freedom in nanoscale systems is central for applications in spin-based electronics and quantum computation. Here we demonstrate such spin–orbit coupling in a carbon-nanotube quantum dot in the general multielectron regime and in the presence of finite disorder. Also, we find a systematic dependence of the spin–orbit coupling on the electron occupation of the quantum dot. Such a dependence has not been seen in any other system and follows from the curvature-induced spin–orbit-split Dirac spectrum of the underlying graphene lattice. Our findings suggest that the spin–orbit coupling is a general property of carbon-nanotube quantum dots, which should provide a unique platform for the study of spin–orbit effects and their applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fourfold periodic nanotube spectrum.
Figure 2: Role of spin–orbit interaction and disorder for the nanotube energy spectrum.
Figure 3: Spin–orbit interaction in a disordered multielectron nanotube quantum dot.
Figure 4: Tuning ΔSO in accordance with the curvature-induced spin–orbit splitting of the nanotube Dirac spectrum.

Similar content being viewed by others

References

  1. Bulaev, D., Trauzettel, B. & Loss, D. Spin–orbit interaction and anomalous spin relaxation in carbon nanotube quantum dots. Phys. Rev. B 77, 235301 (2008).

    Article  ADS  Google Scholar 

  2. Fischer, J. & Loss, D. Dealing with decoherence. Science 324, 1277–1278 (2009).

    Article  Google Scholar 

  3. Churchill, H. et al. Electron–nuclear interaction in 13C nanotube double quantum dots. Nature Phys. 5, 321–326 (2009).

    Article  ADS  Google Scholar 

  4. Flindt, C., Sørensen, A. & Flensberg, K. Spin–orbit mediated control of spin qubits. Phys. Rev. Lett. 97, 240501 (2006).

    Article  ADS  Google Scholar 

  5. Trif, M., Golovach, V. & Loss, D. Spin–spin coupling in electrostatically coupled quantum dots. Phys. Rev. B 75, 085307 (2007).

    Article  ADS  Google Scholar 

  6. Nowack, K., Koppens, F., Nazarov, Y. & Vandersypen, L. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  ADS  Google Scholar 

  7. Pfund, A., Shorubalko, I., Ensslin, K. & Leturcq, R. Suppression of spin relaxation in an InAs nanowire double quantum dot. Phys. Rev. Lett. 99, 036801 (2007).

    Article  ADS  Google Scholar 

  8. Kuemmeth, F., Ilani, S., Ralph, D. & McEuen, P. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    Article  ADS  Google Scholar 

  9. Kuemmeth, F., Churchill, H., Herring, P. & Marcus, C. Carbon nanotubes for coherent spintronics. Mater. Today 13, 18–26 (March 2010).

    Article  Google Scholar 

  10. Ando, T. Spin–orbit interaction in carbon nanotubes. J. Phys. Soc. Jpn 69, 1757–1763 (2000).

    Article  ADS  Google Scholar 

  11. Chico, L., Lopez-Sancho, M. & Munoz, M. Spin splitting induced by spin–orbit interaction in chiral nanotubes. Phys. Rev. Lett. 93, 176402 (2004).

    Article  ADS  Google Scholar 

  12. Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).

    Article  ADS  Google Scholar 

  13. Jeong, J. & Lee, H. Curvature-enhanced spin–orbit coupling in a carbon nanotube. Phys. Rev. B 80, 075409 (2009).

    Article  ADS  Google Scholar 

  14. Izumida, W., Sato, K. & Saito, R. Spin–orbit interaction in single wall carbon nanotubes: Symmetry adapted tight-binding calculation and effective model analysis. J. Phys. Soc. Jpn 78, 074707 (2009).

    Article  ADS  Google Scholar 

  15. Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V. & Loss, D. Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007).

    Article  ADS  Google Scholar 

  16. Csonka, S. et al. Giant fluctuations and gate control of the g-factor in InAs nanowire quantum dots. Nano Lett. 8, 3932–3935 (2008).

    Article  ADS  Google Scholar 

  17. Nilsson, H. et al. Giant, level-dependent g factors in InSb nanowire quantum dots. Nano Lett. 9, 3151–3156 (2009).

    Article  ADS  Google Scholar 

  18. Flensberg, K. & Marcus, C. Bends in nanotubes allow electric spin control and coupling. Phys. Rev. B 81, 195418 (2010).

    Article  ADS  Google Scholar 

  19. Liang, W., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002).

    Article  ADS  Google Scholar 

  20. Cobden, D. & Nygård, J. Shell filling in closed single-wall carbon nanotube quantum dots. Phys. Rev. Lett. 89, 046803 (2002).

    Article  ADS  Google Scholar 

  21. Jarillo-Herrero, P. et al. Electronic transport spectroscopy of carbon nanotubes in a magnetic field. Phys. Rev. Lett. 94, 156802 (2005).

    Article  ADS  Google Scholar 

  22. Makarovski, A., An, L., Liu, J. & Finkelstein, G. Persistent orbital degeneracy in carbon nanotubes. Phys. Rev. B 74, 155431 (2006).

    Article  ADS  Google Scholar 

  23. Moriyama, S., Fuse, T., Suzuki, M., Aoyagi, Y. & Ishibashi, K. Four-electron shell structures and an interacting two-electron system in carbon-nanotube quantum dots. Phys. Rev. Lett. 94, 186806 (2005).

    Article  ADS  Google Scholar 

  24. Oreg, Y., Byczuk, K. & Halperin, B. Spin configurations of a carbon nanotube in a nonuniform externalpotential. Phys. Rev. Lett. 85, 365–368 (2000).

    Article  ADS  Google Scholar 

  25. Minot, E., Yaish, Y., Sazonova, V. & McEuen, P. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428, 536–539 (2004).

    Article  ADS  Google Scholar 

  26. Jarillo-Herrero, P., Sapmaz, S., Dekker, C., Kouwenhoven, L. & van der Zant, H. Electron–hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 429, 389–392 (2004).

    Article  ADS  Google Scholar 

  27. De Franceschi, S. et al. Electron cotunneling in a semiconductor quantum dot. Phys. Rev. Lett. 86, 878–881 (2001).

    Article  ADS  Google Scholar 

  28. Paaske, J. et al. Non-equilibrium singlet–triplet Kondo effect in carbon nanotubes. Nature Phys. 2, 460–464 (2006).

    Article  ADS  Google Scholar 

  29. Hanson, R., Kouwenhoven, L., Petta, J., Tarucha, S. & Vandersypen, L. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  Google Scholar 

  30. Nygård, J., Cobden, D. & Lindelof, P. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

    Article  ADS  Google Scholar 

  31. Galpin, M., Jayatilaka, F., Logan, D. & Anders, F. Interplay between Kondo physics and spin–orbit coupling in carbon nanotube quantum dots. Phys. Rev. B 81, 075437 (2010).

    Article  ADS  Google Scholar 

  32. Kane, C. & Mele, E. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997).

    Article  ADS  Google Scholar 

  33. Kleiner, A. & Eggert, S. Band gaps of primary metallic carbon nanotubes. Phys. Rev. B 63, 073408 (2001).

    Article  ADS  Google Scholar 

  34. Chico, L., Lopez-Sancho, M. & Munoz, M. Curvature-induced anisotropic spin–orbit splitting in carbon nanotubes. Phys. Rev. B 79, 235423 (2009).

    Article  ADS  Google Scholar 

  35. Kong, J., Soh, H., Cassell, A., Quate, C. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. E. Lindelof, J. Mygind, H. I. Jørgensen, C. M. Marcus and F. Kuemmeth for discussions and experimental support. T.S.J. acknowledges the Carlsberg Foundation and Lundbeck Foundation for financial support. K.G-R., K.F. and J.N. acknowledge The Danish Research Council and University of Copenhagen Center of Excellence.

Author information

Authors and Affiliations

Authors

Contributions

T.S.J. and K.G-R. made the measurements, analysed the data and wrote the paper. T.S.J. designed the rotating sample stage. K.G-R. made the sample. K.M., T.F. and J.N. participated in discussions and writing the paper. J.P. and K.F. developed the theory and guided the experiment.

Corresponding authors

Correspondence to T. S. Jespersen or K. Grove-Rasmussen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jespersen, T., Grove-Rasmussen, K., Paaske, J. et al. Gate-dependent spin–orbit coupling in multielectron carbon nanotubes. Nature Phys 7, 348–353 (2011). https://doi.org/10.1038/nphys1880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing