Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Static control logic for microfluidic devices using pressure-gain valves

Abstract

Microfluidic technology has developed greatly in recent years, enabling multiple analysis systems to be placed on a microfluidic chip. However, microfluidic large-scale integration of control elements analogous to those achieved in the microelectronics industry is still a challenge. We present an integrated microfluidic valve, compatible with standard soft-lithography processes, which has a pressure gain much greater than unity. We show that this enables integration of fully static digital control logic and state storage directly on-chip, ultimately enabling microfluidic-state machines to be designed. Outputs from this digital control logic can then be used to control traditional analyte flow valves. This strategy enables much of the bulky external hardware at present used to control pneumatically driven microfluidic chips in the laboratory to be transferred onto the microfluidic chip, which drastically reduces the required number of external chip connections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microfluidic control-logic scheme.
Figure 2: Top and cross-sectional views of the gain-valve design.
Figure 3: Performance graphs.
Figure 4: Interconnection of on-chip control logic to analyte control valves.
Figure 5: Schematics and photomicrographs of implemented logic.

Similar content being viewed by others

References

  1. Melin, J. & Quake, S. R. Microfluidic large-scale integration: The evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007).

    Article  Google Scholar 

  2. Dittrich, P. S., Tachikawa, K. & Manz, A. Micro total analysis systems. Latest advancements and trends. Anal. Chem. 78, 3887–3907 (2006).

    Article  Google Scholar 

  3. Breslauer, D. N., Lee, P. J. & Lee, L. P. Microfluidics-based systems biology. Mol. BioSyst. 2, 97–112 (2006).

    Article  Google Scholar 

  4. Quake, S. R. & Scherer, A. From micro to nano fabrication with soft materials. Science 290, 1536–1540 (2000).

    Article  ADS  Google Scholar 

  5. Einav, S. et al. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nature Biotech. 28, 1019–1027 (2008).

    Article  Google Scholar 

  6. Maerkl, S. J. & Quake, S. R. A systems approach to measuring the binding energy landscapes of transcription. Science 315, 233–237 (2007).

    Article  ADS  Google Scholar 

  7. Gomez-Sjoberg, R., Leyrat, A. A., Pirone, D. M., Chen, C. S. & Quake, S. R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79, 8557–8563 (2007).

    Article  Google Scholar 

  8. Yager, P. et al. Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006).

    Article  ADS  Google Scholar 

  9. Myers, F. B. & Lee, L. P. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8, 2015–2031 (2008).

    Article  Google Scholar 

  10. Anderson, M. J., Hansen, C. L. & Quake, S. R. Phase knowlege enables rational screens for protein crystallization. Proc. Natl Acad. Sci. USA 103, 16746–16751 (2006).

    Article  ADS  Google Scholar 

  11. Unger, M. A., Chou, H.-P., Thorsen, T., Axel, S. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  ADS  Google Scholar 

  12. Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  ADS  Google Scholar 

  13. Liu, J., Hansen, C. & Quake, S. R. Solving the ‘word-to-chip’ interface problem. Anal. Chem. 75, 4718–4723 (2003).

    Article  Google Scholar 

  14. Leslie, D. C. et al. Frequency-specific flow control in microfluidic circuits with passive elastomeric features. Nature Phys. 5, 231–235 (2009).

    Article  ADS  Google Scholar 

  15. Rhee, M. & Burns, M. A. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems. Lab Chip 9, 3131–3143 (2009).

    Article  Google Scholar 

  16. Grover, W. H., Ivester, R. H. C., Jensen, E. C. & Mathies, R. A. Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6, 623–631 (2006).

    Article  Google Scholar 

  17. Quero, J. M., Lugue, A. & Franquelo, L. G. ISCAS Vol. 2, 588–591 (IEEE Phoenix, 2002).

    Google Scholar 

  18. Takao, H., Ishida, M. & Sawada, K. A pneumatically actuated full in-channel microvalve with MOSFET-like function in fluid channel networks. IEEE J. Micromech. Syst. 11, 421–426 (2002).

    Article  Google Scholar 

  19. Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T. & Mathies, R. A. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens. Actuat. B 89, 315–323 (2003).

    Article  Google Scholar 

  20. Hua, Z. et al. A versatile microreactor platform featuring a chemical-resistant microvalve array for addressable multiplex syntheses and assays. J. Micromech. Microeng. 16, 1433–1443 (2006).

    Article  ADS  Google Scholar 

  21. Jensen, E. C., Grover, W. H. & Mathies, R. A. Micropneumatic digital logic structures for integrated microdevice computation and control. IEEE J. Micromech. Syst. 16, 1378–1385 (2007).

    Google Scholar 

  22. Groisman, A., Enzelberger, M. & Quake, S. R. Microfluidic memory and control devices. Science 300, 955–958 (2003).

    Article  ADS  Google Scholar 

  23. Timoshenko, S. P. & Goodier, J. N. Theory of Elasticity 3rd edn, 8–10 (McGraw-Hill, 1970).

    MATH  Google Scholar 

  24. Riande, E., Diaz-Calleja, R., Prolongo, M., Masegosa, R. & Salom, C. Polymer Viscoelasticity 196–237 (Dekker, 1999).

    Google Scholar 

  25. Haeberle, S., Schmitt, N., Zengerle, R. & Ducree, J. Centrifugo-magnetic pump for gas-to-liquid sampling. Sens. Actuat. A 135, 28–33 (2007).

    Article  Google Scholar 

  26. Luharuka, R., LeBlanc, S., Bintoro, J. S., Berthelot, Y. H. & Hesketh, P. J. Simulated and experimental dynamic response characterization of an electromagnetic microvalve. Sens. Actuat. A 143, 399–408 (2008).

    Article  Google Scholar 

  27. Chen, P.-J., Rodger, D. C., Meng, E. M., Humayun, M. S. & Tai, Y.-C. Surface-micromachined parylene dual valves for on-chip unpowered microflow regulation. IEEE J. Micromech. Syst. 16, 223–231 (2007).

    Article  Google Scholar 

  28. Shiva, S. G. Introduction to Logic Design 2nd edn, 84–85 (Dekker, 1998).

    Google Scholar 

  29. Shiva, S. G. Introduction to Logic Design 2nd edn, 502–503 (Dekker, 1998).

    Google Scholar 

  30. Kartalov, E. P., Walker, C., Taylor, C. R., Anderson, W. F. & Scherer, A. Microfluidic vias enable nested bioarrays and autoregulatory devices in Newtonian fluids. Proc. Natl Acad. Sci. USA 103, 12280–12284 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge NIH R01 HG02644 Quake, 03/05/04-04/30/09. This work was funded by unrestricted funds from the Electrical Engineering Department of Stanford University. Finally, one of the authors, S.R.Q., co-founded a microfluidics company (Fluidigm).

Author information

Authors and Affiliations

Authors

Contributions

M.A.H. and S.R.Q. contributed the initial idea of using on-chip static fluidic logic to reduce chip connection counts for large analysis chips. J.A.W., J.M. and D.S. contributed equally to gain-valve and logic development, experimental measurements and manuscript preparation.

Corresponding author

Correspondence to James A. Weaver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 458 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 7639 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 6892 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, J., Melin, J., Stark, D. et al. Static control logic for microfluidic devices using pressure-gain valves. Nature Phys 6, 218–223 (2010). https://doi.org/10.1038/nphys1513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing