Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of shear modulus and statistics in the supersolidity of helium

Abstract

The first clear evidence for supersolidity in helium came from experiments in which the resonant period of a torsional oscillator decreased below 0.2 K, indicating that some of the solid 4He decoupled from the oscillation. More recently, shear-modulus measurements on solid 4He revealed an unexpected increase with the same dependence on temperature and 3He impurities. The similarities raised the possibility that the period drop in torsion experiments is simply due to the stiffening of the solid. Here, we report the same measurements on solid 3He, a Fermi solid instead of a Bose solid. The anomalous modulus increase found in hexagonal close-packed (hcp) 4He, is also found in hcp 3He. However, in the case of 3He, the shear modulus increase is not accompanied by a corresponding period change of the torsional oscillator. We conclude that elastic stiffening alone does not produce the changes in the torsional-oscillator period and that decoupling occurs only in a stiffened Bose solid.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shear modulus of bcc and hcp solid 3He.
Figure 2: Amplitude dependence of the shear modulus in hcp and bcc 3He and hcp 4He.
Figure 3: Torsional-oscillator period and dissipation for solid 4He.
Figure 4: Comparison of torsional-oscillator results for hcp and bcc 3He and hcp 4He.

Similar content being viewed by others

References

  1. Kim, E. & Chan, M. H. W. Observation of superflow in solid helium. Science 305, 1941–1944 (2004).

    Article  ADS  Google Scholar 

  2. Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).

    Article  ADS  Google Scholar 

  3. Leggett, A. J. Can a solid be superfluid? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article  ADS  Google Scholar 

  4. Rittner, A. S. C. & Reppy, J. D. Observation of classical rotational inertia and nonclassical supersolid signals in solid 4He below 250 mK. Phys. Rev. Lett. 97, 165301 (2006).

    Article  ADS  Google Scholar 

  5. Kondo, M., Takada, S., Shibayama, Y. & Shirahama, K. Observation of non-classical rotational inertia in bulk solid 4He. J. Low Temp. Phys. 148, 695–699 (2007).

    Article  ADS  Google Scholar 

  6. Aoki, Y., Graves, J. C. & Kojima, H. Oscillation frequency dependence of nonclassical rotation inertia of solid 4He. Phys. Rev. Lett. 99, 015301 (2007).

    Article  ADS  Google Scholar 

  7. Penzev, A., Yasuta, Y. & Kubota, M. Annealing effect for supersolid fraction in 4He. J. Low Temp. Phys. 148, 677–681 (2007).

    Article  ADS  Google Scholar 

  8. Hunt, B. et al. Evidence for a superglass state in solid 4He. Science 324, 632–636 (2009).

    Article  ADS  Google Scholar 

  9. Kim, D. Y., Kim, H. C. & Kim, E. Non-classical response of solid helium confined in Vycor glass. Bull. Am. Phys. Soc. 53, 457 (2008).

    Google Scholar 

  10. Clark, A. C., West, J. T. & Chan, M. H. W. Nonclassical rotational inertia in helium crystals. Phys. Rev. Lett. 99, 135302 (2007).

    Article  ADS  Google Scholar 

  11. Rittner, A. S. C. & Reppy, J. D. Disorder and the supersolid state of solid 4He. Phys. Rev. Lett. 98, 175302 (2007).

    Article  ADS  Google Scholar 

  12. Kim, E. et al. The effect of 3He impurities on the nonclassical response to oscillation of solid 4He. Phys. Rev. Lett. 100, 065301 (2008).

    Article  ADS  Google Scholar 

  13. Mulders, N. et al. Torsional oscillator and synchrotron X-ray experiments on solid 4He in aerogel. Phys. Rev. Lett. 101, 165303 (2008).

    Article  ADS  Google Scholar 

  14. Lin, X., Clark, A. C. & Chan, M. H. W. Heat capacity signature of the supersolid transition. Nature 449, 1025–1028 (2007).

    Article  ADS  Google Scholar 

  15. Lin, X., Clark, A. C., Cheng, Z. G. & Chan, M. H. W. Heat capacity peak in solid 4He: Effects of disorder and 3He impurities. Phys. Rev. Lett. 102, 125302 (2008).

    Article  ADS  Google Scholar 

  16. Greywall, D. S. Search for superfluidity in solid 4He. Phys. Rev. B. 16, 1291–1292 (1977).

    Article  ADS  Google Scholar 

  17. Day, J., Herman, T. & Beamish, J. Freezing and pressure-driven flow of solid helium in Vycor. Phys. Rev. Lett. 95, 035301 (2005).

    Article  ADS  Google Scholar 

  18. Day, J. & Beamish, J. Pressure-driven flow of solid helium. Phys. Rev. Lett. 96, 105304 (2006).

    Article  ADS  Google Scholar 

  19. Rittner, A. S. C., Choi, W. & Reppy, J. D. Pressure-driven mass flow in solid 4He. Bull. Am. Phys. Soc. 54, 772 (2009).

    Google Scholar 

  20. Sasaki, S. et al. Superfluidity of grain boundaries and supersolid behavior. Science 313, 1098–1100 (2006).

    Article  ADS  Google Scholar 

  21. Ray, M. W. & Hallock, R. B. Observation of unusual mass transport in solid hcp 4He. Phys. Rev. Lett. 100, 235303 (2008).

    ADS  Google Scholar 

  22. Balibar, S. & Caupin, F. Supersolidity and disorder. J. Phys. Condens. Matter 20, 173201 (2008).

    Article  ADS  Google Scholar 

  23. Prokof ’ev, N. V. What makes a crystal supersolid? Adv. Phys. 56, 381–402 (2007).

    Article  ADS  Google Scholar 

  24. Galli, D. E. & Reatto, L. J. Solid 4He and the supersolid phase: From theoretical speculation to the discovery of a new state of matter?—A review of the past and present status of research. J. Phys. Soc. Jpn 77, 111010 (2008).

    Article  ADS  Google Scholar 

  25. Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107–1113 (1969).

    ADS  Google Scholar 

  26. Chester, G. V. Speculations on Bose–Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    Article  ADS  Google Scholar 

  27. Clark, B. K. & Ceperley, D. M. Off-diagonal long-range order in solid 4He. Phys. Rev. Lett. 96, 105302 (2006).

    Article  ADS  Google Scholar 

  28. Boninsegni, M. et al. Fate of vacancy-induced supersolidity in 4He. Phys. Rev. Lett. 97, 080401 (2006).

    Article  ADS  Google Scholar 

  29. Anderson, P. W. A Gross-Pitaevskii treatment for supersolid helium. Science 324, 631–632 (2009).

    Article  ADS  Google Scholar 

  30. Paalanen, M. A., Bishop, D. J. & Dail, H. W. Dislocation motion in hcp 4He. Phys. Rev. Lett. 46, 664–667 (1981).

    Article  ADS  Google Scholar 

  31. Iwasa, I., Araki, K. & Suzuki, H. Temperature and frequency dependence of the sound velocity in hcp 4He crystals. J. Phys. Soc. Jpn 46, 1119–1926 (1979).

    Article  ADS  Google Scholar 

  32. Suzuki, H. Plastic flow in solid helium. J. Phys. Soc. Jpn 35, 1472–1479 (1973).

    Article  ADS  Google Scholar 

  33. Boninsegni, M. et al. Luttinger liquid in the core of a screw dislocation in helium-4. Phys. Rev. Lett. 99, 035301 (2007).

    Article  ADS  Google Scholar 

  34. Shevchenko, S. I. Quasi-one-dimensional superfluidity in Bose systems. Sov. J. Low Temp. Phys. 14, 553–562 (1988).

    Google Scholar 

  35. Toner, J. Quenched dislocation enhanced supersolid ordering. Phys. Rev. Lett. 100, 035302 (2008).

    Article  ADS  Google Scholar 

  36. Day, J. & Beamish, J. Low-temperature shear modulus changes in solid 4He and connection to supersolidity. Nature 450, 853–856 (2007).

    Article  ADS  Google Scholar 

  37. Day, J. & Beamish, J. Flow of solid 4He near melting. J. Low Temp. Phys. 148, 683–687 (2007).

    Article  ADS  Google Scholar 

  38. Clark, A. C., Maynard, J. D. & Chan, M. H. W. Thermal history of solid 4He under oscillation. Phys. Rev. B 77, 184513 (2008).

    Article  ADS  Google Scholar 

  39. Rittner, A. S. C. & Reppy, J. D. Probing the upper limit of nonclassical rotational inertia in solid helium 4. Phys. Rev. Lett. 101, 155301 (2008).

    Article  ADS  Google Scholar 

  40. Hull, D. & Bacon, D. J. Introduction to Dislocations 4th edn (Elsevier Butterworth-Heinemann, 2001).

    Google Scholar 

Download references

Acknowledgements

We are financially supported by the Natural Sciences and Engineering Research Council of Canada and by the National Science Foundation. We gratefully acknowledge the technical assistance from C. Baird and useful discussions with P. Anderson, A. Clark, J. Day, E. Kim, X. Lin, N. Mulders, L. Reatto and J. Reppy.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were carried out by J.T.W. and O.S. Project planning and analysis of data were shared by all authors.

Corresponding author

Correspondence to Joshua T. West.

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, J., Syshchenko, O., Beamish, J. et al. Role of shear modulus and statistics in the supersolidity of helium. Nature Phys 5, 598–601 (2009). https://doi.org/10.1038/nphys1337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing