Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip

Abstract

Entanglement-based technologies, such as quantum information processing, quantum simulations and quantum-enhanced metrology, have the potential to revolutionize our way of computing and measuring, and help clarify the puzzling concept of entanglement itself. Ultracold atoms on atom chips are attractive for their implementation, as they provide control over quantum systems in compact, robust and scalable set-ups. An important tool in this system is a potential depending on the internal atomic state. Coherent dynamics in such a potential combined with collisional interactions enables entanglement generation both for individual atoms and ensembles. Here, we demonstrate coherent manipulation of Bose-condensed atoms in a state-dependent potential, generated with microwave near-fields on an atom chip. We reversibly entangle atomic internal and motional states, realizing a trapped-atom interferometer with internal-state labelling. Our system provides control over collisions in mesoscopic condensates, paving the way to on-chip generation of many-particle entanglement and quantum-enhanced metrology with spin-squeezed states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coherent internal-state manipulation and generation of state-dependent microwave potentials.
Figure 2: Atom chip with microwave CPWs.
Figure 3: State-selective splitting of the BEC.
Figure 4: Dynamical splitting and recombination scheme used for BEC interferometry.
Figure 5: Periodic recurrences of Ramsey interference contrast in the BEC interferometer.

Similar content being viewed by others

References

  1. DiVincenzo, D. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  Google Scholar 

  2. Nielsen, M. A. & Chuang, I. L. Quantum Computation And Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  3. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  4. Jané, E., Vidal, G., Dür, W., Zoller, P. & Cirac, J. I. Simulation of quantum dynamics with quantum optical systems. Quant. Inf. Comput. 3, 15–37 (2003).

    MathSciNet  MATH  Google Scholar 

  5. Dunningham, J. A. Using quantum theory to improve measurement precision. Contemp. Phys. 47, 257–267 (2006).

    Article  ADS  Google Scholar 

  6. Childs, A. M., Preskill, J. & Renes, J. Quantum information and precision measurement. J. Mod. Opt. 47, 155–176 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  7. Chu, S. Cold atoms and quantum control. Nature 416, 206–210 (2002).

    Article  ADS  Google Scholar 

  8. Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).

    Article  ADS  Google Scholar 

  9. Du, S. et al. Atom-chip Bose–Einstein condensation in a portable vacuum cell. Phys. Rev. A 70, 053606 (2004).

    Article  ADS  Google Scholar 

  10. Vogel, A. et al. Bose–Einstein condensates in microgravity. Appl. Phys. B 84, 663–671 (2006).

    Article  ADS  Google Scholar 

  11. Whitlock, S., Gerritsma, R., Fernholz, T. & Spreeuw, R. J. C. Two-dimensional array of microtraps with atomic shift register on a chip. New J. Phys. 11, 023021 (2009).

    Article  ADS  Google Scholar 

  12. Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004).

    Article  ADS  Google Scholar 

  13. Wang, Y.-J. et al. Atom Michelson interferometer on a chip using a Bose–Einstein condensate. Phys. Rev. Lett. 94, 090405 (2005).

    Article  ADS  Google Scholar 

  14. Schumm, T. et al. Matter-wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005).

    Article  ADS  Google Scholar 

  15. Günther, A. et al. Diffraction of a Bose–Einstein condensate from a magnetic lattice on a micro chip. Phys. Rev. Lett. 95, 170405 (2005).

    Article  ADS  Google Scholar 

  16. Günther, A. et al. Atom interferometer based on phase coherent splitting of Bose–Einstein condensates with an integrated magnetic grating. Phys. Rev. Lett. 98, 140403 (2007).

    Article  ADS  Google Scholar 

  17. Jo, G.-B. et al. Long phase coherence time and number squeezing of two Bose–Einstein condensates on an atom chip. Phys. Rev. A 98, 030407 (2007).

    Google Scholar 

  18. Jo, G.-B. et al. Phase-sensitive recombination of two Bose–Einstein condensates on an atom chip. Phys. Rev. Lett. 98, 180401 (2007).

    Article  ADS  Google Scholar 

  19. Calarco, T. et al. Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps. Phys. Rev. A 61, 022304 (2000).

    Article  ADS  Google Scholar 

  20. Treutlein, P. et al. Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys. Rev. A 74, 022312 (2006).

    Article  ADS  Google Scholar 

  21. Li, Y., Treutlein, P., Reichel, J. & Sinatra, A. Spin squeezing in a bimodal condensate: Spatial dynamics and particle losses. Eur. Phys. J. B 68, 365–381 (2009).

    Article  ADS  Google Scholar 

  22. Marte, A. et al. Feshbach resonances in rubidium 87: Precision measurement and analysis. Phys. Rev. Lett. 89, 283202 (2002).

    Article  Google Scholar 

  23. Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    Article  ADS  Google Scholar 

  24. Mandel, O. et al. Controlled collisions for multiparticle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    Article  ADS  Google Scholar 

  25. Diener, R. B., Wu, B., Raizen, M. G. & Niu, Q. Quantum tweezer for atoms. Phys. Rev. Lett. 89, 070401 (2002).

    Article  ADS  Google Scholar 

  26. Mohring, B. et al. Extracting atoms on demand with lasers. Phys. Rev. A 71, 053601 (2005).

    Article  ADS  Google Scholar 

  27. Colombe, Y. et al. Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007).

    Article  ADS  Google Scholar 

  28. Dudarev, A. M., Raizen, M. G. & Niu, Q. Quantum many-body culling: Production of a definite number of ground-state atoms in a Bose–Einstein condensate. Phys. Rev. Lett. 98, 063001 (2007).

    Article  ADS  Google Scholar 

  29. Widera, A. et al. Quantum spin dynamics of mode-squeezed Luttinger liquids in two-component atomic gases. Phys. Rev. Lett. 100, 140401 (2008).

    Article  ADS  Google Scholar 

  30. Agosta, C. C., Silvera, I. F., Stoof, H. T. C. & Verhaar, B. J. Trapping of neutral atoms with resonant microwave radiation. Phys. Rev. Lett. 62, 2361–2364 (1989).

    Article  ADS  Google Scholar 

  31. Spreeuw, R. J. C. et al. Demonstration of neutral atom trapping with microwaves. Phys. Rev. Lett. 72, 3162–3165 (1994).

    Article  ADS  Google Scholar 

  32. Hofferberth, S., Lesanovsky, I., Fischer, B., Verdu, J. & Schmiedmayer, J. Radiofrequency-dressed-state potentials for neutral atoms. Nature Phys. 2, 710–716 (2006).

    Article  ADS  Google Scholar 

  33. Bloch, I. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23–30 (2005).

    Article  ADS  Google Scholar 

  34. Treutlein, P. Coherent Manipulation of Ultracold Atoms on Atom Chips. PhD thesis, Ludwig–Maximilians-Universität München and Max-Planck-Institut für Quantenoptik (2008).

  35. Collin, R. E. Foundations For Microwave Engineering 2nd edn (Wiley, 2001).

    Book  Google Scholar 

  36. Ketterle, W., Durfee, D. S. & Stamper-Kurn, D. M. in Bose–Einstein Condensation In Atomic Gases, Proceedings Of The International School of Physics Enrico Fermi, Course CXL (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 67–176 (IOS Press, 1999).

    Google Scholar 

  37. Matthews, M. R. et al. Dynamical response of a Bose–Einstein condensate to a discontinuous change in internal state. Phys. Rev. Lett. 81, 243–247 (1998).

    Article  ADS  Google Scholar 

  38. Mateo, A. M. & Delgado, V. Ground-state properties of trapped Bose–Einstein condensates: Extension of the Thomas–Fermi approximation. Phys. Rev. A 75, 063610 (2007).

    Article  ADS  Google Scholar 

  39. Sørensen, A., Duan, L.-M., Cirac, J. I. & Zoller, P. Many-particle entanglement with Bose–Einstein condensates. Nature 409, 63–66 (2001).

    Article  ADS  Google Scholar 

  40. Micheli, A., Jaksch, D., Cirac, J. I. & Zoller, P. Many-particle entanglement in two-component Bose–Einstein condensates. Phys. Rev. A 67, 013607 (2003).

    Article  ADS  Google Scholar 

  41. Bordé, C. J. Atomic interferometry with internal state labelling. Phys. Lett. A 140, 10–12 (1989).

    Article  ADS  Google Scholar 

  42. Berman, P. R. (ed.) Atom Interferometry (Academic, 1997).

  43. Scott, R. G., Judd, T. E. & Fromhold, T. M. Exploiting soliton decay and phase fluctuations in atom chip interferometry of Bose–Einstein condensates. Phys. Rev. Lett. 100, 100402 (2008).

    Article  ADS  Google Scholar 

  44. Rosenbusch, P. Magnetically trapped atoms for compact atomic clocks. Appl. Phys. B 95, 227–235 (2009).

    Article  ADS  Google Scholar 

  45. Hänsel, W., Hommelhoff, P., Hänsch, T. W. & Reichel, J. Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001).

    Article  ADS  Google Scholar 

  46. Reinaudi, G., Lahaye, T., Wang, Z. & Guéry-Odelin, D. Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt. Lett. 32, 3143–3145 (2007).

    Article  ADS  Google Scholar 

  47. Ghione, G. & Naldi, C. Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling. IEEE Trans. Microw. Theory Tech. 35, 260–267 (1987).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. P. Kotthaus and his group for cleanroom access and advice on chip fabrication; F. Peretti, G. Csaba, F. J. Schmückle and F. Reinhardt for microwave simulations and helpful discussions on microwave design; and A. Sinatra and Y. Li for helpful discussions on spin squeezing. We thank S. Camerer, D. Hunger and A. Sinatra for careful reading of the manuscript. We acknowledge support of the Nanosystems Initiative Munich.

Author information

Authors and Affiliations

Authors

Contributions

P.T. and J.R. conceived the experiment. P.T. worked out the theory. P.B., M.F.R., J.H. and P.T. designed and built the experiment. P.B., M.F.R. and P.T. collected and analysed the data and wrote the manuscript. P.T. and T.W.H. supervised the experiment. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Philipp Treutlein.

Supplementary information

Supplementary Information

Supplementary Information (PDF 630 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhi, P., Riedel, M., Hoffrogge, J. et al. Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip. Nature Phys 5, 592–597 (2009). https://doi.org/10.1038/nphys1329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing