Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Matter-wave interferometry in a double well on an atom chip

Abstract

Matter-wave interference experiments enable us to study matter at its most basic, quantum level and form the basis of high-precision sensors for applications such as inertial and gravitational field sensing. Success in both of these pursuits requires the development of atom-optical elements that can manipulate matter waves at the same time as preserving their coherence and phase. Here, we present an integrated interferometer based on a simple, coherent matter-wave beam splitter constructed on an atom chip. Through the use of radio-frequency-induced adiabatic double-well potentials, we demonstrate the splitting of Bose–Einstein condensates into two clouds separated by distances ranging from 3 to 80 μm, enabling access to both tunnelling and isolated regimes. Moreover, by analysing the interference patterns formed by combining two clouds of ultracold atoms originating from a single condensate, we measure the deterministic phase evolution throughout the splitting process. We show that we can control the relative phase between the two fully separated samples and that our beam splitter is phase-preserving.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Operation principle of the beam splitter.
Figure 2: The splitting of BECs is controlled over a wide spatial range.
Figure 3: The coherence of the splitting is examined by analysing matter-wave interference patterns.
Figure 4: Evolution of the differential phase throughout the splitting process.

Similar content being viewed by others

References

  1. Badurek, G., Rauch, H. & Zeilinger, A. (eds) Matter Wave Interferometry (North-Holland, Amsterdam, 1988).

  2. Berman, P. R. (ed.) Atom Interferometry (Academic, New York, 1997).

  3. Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181 (1991).

    Article  ADS  Google Scholar 

  4. Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).

    Article  Google Scholar 

  5. Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

    Article  ADS  Google Scholar 

  6. Cirone, M. A., Negretti, A., Calarco, T., Krüger, P. & Schmiedmayer, J. A simple quantum gate with atom chips. Eur. Phys. J. D 35, 165–171 (2005).

    Article  ADS  Google Scholar 

  7. Müller, D., Anderson, D. Z., Grow, R. J., Schwindt, P. D. D. & Cornell, E. A. Guiding neutral atoms around curves with lithographically patterned current-carrying wires. Phys. Rev. Lett. 83, 5194–5197 (1999).

    Article  ADS  Google Scholar 

  8. Reichel, J., Hänsel, W. & Hänsch, T. W. Atomic micromanipulation with magnetic surface traps. Phys. Rev. Lett. 83, 3398–3401 (1999).

    Article  ADS  Google Scholar 

  9. Folman, R. et al. Controlling cold atoms using nanofabricated surfaces: Atom chips. Phys. Rev. Lett. 84, 4749–4752 (2000).

    Article  ADS  Google Scholar 

  10. Dekker, N. H. et al. Guiding neutral atoms on a chip. Phys. Rev. Lett. 84, 1124–1127 (2000).

    Article  ADS  Google Scholar 

  11. Brugger, K. et al. Two-wire guides and traps with vertical bias fields on an atom chip. Phys. Rev. A 72, 023607 (2005).

    Article  ADS  Google Scholar 

  12. Krüger, P. et al. Trapping and manipulating neutral atoms with electrostatic fields. Phys. Rev. Lett. 91, 233201 (2003).

    Article  ADS  Google Scholar 

  13. Dumke, R., Müther, T., Volk, M., Ertmer, W. & Birkl, G. Interferometer-type structures for guided atoms. Phys. Rev. Lett. 89, 220402 (2002).

    Article  ADS  Google Scholar 

  14. Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004).

    Article  ADS  Google Scholar 

  15. Wang, Y. -J. et al. An atom Michelson interferometer on a chip using a Bose-Einstein condensate. Phys. Rev. Lett. 94, 090405 (2005).

    Article  ADS  Google Scholar 

  16. Günther, A. et al. Diffraction of a Bose-Einstein condensate from a magnetic lattice on a micro chip. cond-mat/0504210 (2005).

  17. Calarco, T. et al. Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps. Phys. Rev. A 61, 022304 (2000).

    Article  ADS  Google Scholar 

  18. Charron, E., Tiesinga, E., Mies, F. & Williams, C. Optimizing a phase gate using quantum interference. Phys. Rev. Lett. 88, 077901 (2002).

    Article  ADS  Google Scholar 

  19. Shin, Y. et al. Atom interferometry with Bose-Einstein condensates in a double-well potential. Phys. Rev. Lett. 92, 050405 (2004).

    Article  ADS  Google Scholar 

  20. Albiez, M. et al. Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005).

    Article  ADS  Google Scholar 

  21. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  ADS  Google Scholar 

  22. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–776 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  23. Kasevich, M. A. Coherence with atoms. Science 298, 1363–1368 (2002).

    Article  ADS  Google Scholar 

  24. Cassettari, D., Hessmo, B., Folman, R., Maier, T. & Schmiedmayer, J. Beam splitter for guided atoms. Phys. Rev. Lett. 85, 5483–5487 (2000).

    Article  ADS  Google Scholar 

  25. Müller, D. et al. Waveguide atom beam splitter for laser-cooled neutral atoms. Opt. Lett. 25, 1382–1384 (2000).

    Article  ADS  Google Scholar 

  26. Hommelhoff, P., Hänsel, W., Steinmetz, T., Hänsch, T. W. & Reichel, J. Transporting, splitting and merging of atomic ensembles in a chips trap. New J. Phys. 7, 3–20 (2005).

    Article  ADS  Google Scholar 

  27. Shin, Y. et al. Interference of Bose-Einstein condensates split with an atom chip. Phys. Rev. A 72, 021604 (2005).

    Article  ADS  Google Scholar 

  28. Muskat, E., Dubbers, D. & Schärpf, O. Dressed neutrons. Phys. Rev. Lett. 58, 2047–2050 (1987).

    Article  ADS  Google Scholar 

  29. Zobay, O. & Garraway, B. M. Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195–1198 (2001).

    Article  ADS  Google Scholar 

  30. Colombe, Y. et al. Ultracold atoms confined in rf-induced two-dimensional trapping potentials. Europhys. Lett. 67, 593–599 (2004).

    Article  ADS  Google Scholar 

  31. Wildermuth, S. et al. Optimized magneto-optical trap for experiments with ultracold atoms near surfaces. Phys. Rev. A 69, 030901(R) (2004).

    Article  ADS  Google Scholar 

  32. Groth, S. et al. Atom chips: Fabrication and thermal properties. Appl. Phys. Lett. 85, 2980–2982 (2004).

    Article  ADS  Google Scholar 

  33. Krüger, P. et al. Disorder potentials near lithographically fabricated atom chip. cond-mat/0504686 (2005).

  34. Wildermuth, S. et al. Microscopic magnetic-field imaging. Nature 435, 440 (2005).

    Article  ADS  Google Scholar 

  35. Röhrl, A., Naraschewski, M., Schenzle, A. & Wallis, H. Transition for phase locking to the interference of independent Bose condensates: theory versus experiment. Phys. Rev. Lett. 78, 4143 (1997).

    Article  ADS  Google Scholar 

  36. Whitlock, N. K. & Bouchoule, I. Relative phase fluctuations of two coupled one-dimensional condensates. Phys. Rev. A 68, 053609 (2003).

    Article  ADS  Google Scholar 

  37. Éstève, J. et al. Realizing a stable magnetic double-well potential on an atom chip. Eur. Phys. J. D 35, 141–146 (2005).

    Article  ADS  Google Scholar 

  38. Giovanazzi, S., Shenoy, R., Smerzi, A. & Fantoni, S. Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 79, 4950–4953 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Perrin and I. Lesanovsky for useful discussions. We acknowledge financial support from the European Union, contract numbers IST-2001-38863 (ACQP), MRTN-CT-2003-505032 (Atom Chips), HPRN-CT-2002-00304 (FASTNet), HPMF-CT-2002-02022, and HPRI-CT-1999-00114 (LSF) and the Deutsche Forschungsgemeinschaft, contract number SCHM 1599/1-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Schmiedmayer or P. Krüger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumm, T., Hofferberth, S., Andersson, L. et al. Matter-wave interferometry in a double well on an atom chip. Nature Phys 1, 57–62 (2005). https://doi.org/10.1038/nphys125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing