Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reliable neuronal logic devices from patterned hippocampal cultures

Abstract

Functional logical microcircuits are an essential building block of computation in the brain. However, single neuronal connections are unreliable, and it is unclear how neuronal ensembles can be constructed to achieve high response fidelity. Here, we show that reliable, mesoscale logical devices can be created in vitro by geometrical design of neural cultures. We control the connections and activity by assembling living neural networks on quasi-one-dimensional configurations. The linear geometry yields reliable transmission lines. Incorporating thin lines creates ‘threshold’ devices and logical ‘AND gates’. Breaking the symmetry of transmission makes neuronal ‘diodes’. All of these function with error rates well below that of a single connection. The von Neumann model of redundancy and error correction accounts well for all of the devices, giving a quantitative estimate for the reliability of a neuronal connection and of threshold devices. These neuronal devices may contribute to the implementation of computation in vitro and, ultimately, to its understanding in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterning neuronal cultures.
Figure 2: Function of the neuronal devices.
Figure 3: Internal structure of neuronal devices.
Figure 4: Error-correction model based on redundancy.
Figure 5: Complex devices.

Similar content being viewed by others

References

  1. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  2. Movshon, J. A. Reliability of neuronal responses. Neuron 27, 412–414 (2000).

    Article  Google Scholar 

  3. von Neumann, J. in Automata Studies (eds Shannon, C. & McCarthy, J.) 43–98 (Princeton Univ. Press, 1956).

    Google Scholar 

  4. Jacobi, S. & Moses, E. Variability and corresponding amplitude-velocity relation of activity propagating in one-dimensional neural cultures. J. Neurophysiol. 97, 3597–3606 (2007).

    Article  Google Scholar 

  5. Eytan, D. & Marom, S. Dynamics and effective topology underlying synchronization in networks of cortical neurons. J. Neurosci. 26, 8465–8476 (2006).

    Article  Google Scholar 

  6. Reinagel, P., Godwin, D., Sherman, S. M. & Koch, C. Encoding of visual information by LGN bursts. J. Neurophysiol. 81, 2558–2569 (1999).

    Article  Google Scholar 

  7. Breskin, I., Soriano, J., Moses, E. & Tlusty, T. Percolation in living neural networks. Phys. Rev. Lett. 97, 188102 (2006).

    Article  ADS  Google Scholar 

  8. Feinerman, O., Segal, M. & Moses, E. Identification and dynamics of spontaneous burst initiation zones in uni-dimensional neuronal cultures. J. Neurophysiol. 97, 2937–2948 (2007).

    Article  Google Scholar 

  9. Marom, S. & Shahaf, G. Development, learning and memory in large random networks of cortical neurons: Lessons beyond anatomy. Q. Rev. Biophys. 35, 63–87 (2002).

    Article  Google Scholar 

  10. Wyart, C. et al. Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces. J. Neurosci. Methods 117, 123–131 (2002).

    Article  Google Scholar 

  11. Chang, J. C., Brewer, G. J. & Wheeler, B. C. Neuronal network structuring induces greater neuronal activity through enhanced astroglial development. J. Neural Eng. 3, 217–226 (2006).

    Article  ADS  Google Scholar 

  12. Chang, J. C., Brewer, G. J. & Wheeler, B. C. Modulation of neural network activity by patterning. Biosens. Bioelectron. 16, 527–533 (2001).

    Article  Google Scholar 

  13. Zeck, G. & Fromherz, P. Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip. Proc. Natl Acad. Sci. USA 98, 10457–10462 (2001).

    Article  ADS  Google Scholar 

  14. Maher, M. P., Pine, J., Wright, J. & Tai, Y. C. The neurochip: A new multielectrode device for stimulating and recording from cultured neurons. J. Neurosci. Methods 87, 45–56 (1999).

    Article  Google Scholar 

  15. Feinerman, O., Segal, M. & Moses, E. Signal propagation along unidimensional neuronal networks. J. Neurophysiol. 94, 3406–3416 (2005).

    Article  Google Scholar 

  16. Feinerman, O. & Moses, E. Transport of information along unidimensional layered networks of dissociated hippocampal neurons and implications for rate coding. J. Neurosci. 26, 4526–4534 (2006).

    Article  Google Scholar 

  17. Feinerman, O. & Moses, E. A picoliter ‘fountain-pen’ using co-axial dual pipettes. J. Neurosci. Methods 127, 75–84 (2003).

    Article  Google Scholar 

  18. Stevens, C. F. Neuronal communication. Cooperativity of unreliable neurons. Curr. Biol. 4, 268–269 (1994).

    Article  Google Scholar 

  19. Thomson, A. M., Deuchars, J. & West, D. C. Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. J. Neurophysiol. 70, 2354–2369 (1993).

    Article  Google Scholar 

  20. Stevens, C. F. & Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    Article  ADS  Google Scholar 

  21. Soriano, J., Rodríguez-Martínez, M., Tlusty, T. & Moses, E. Development of input connections in neural cultures. Proc. Natl Acad. Sci. USA 105, 13758–13763 (2008).

    Article  ADS  Google Scholar 

  22. Allen, C. & Stevens, C. F. An evaluation of causes for unreliability of synaptic transmission. Proc. Natl Acad. Sci. USA 91, 10380–10383 (1994).

    Article  ADS  Google Scholar 

  23. Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42, 230–265 (1936).

    MathSciNet  MATH  Google Scholar 

  24. Yarnitsky, D. & Ochoa, J. L. Differential effect of compression-ischaemia block on warm sensation and heat-induced pain. Brain 114, 907–913 (1991).

    Article  Google Scholar 

  25. Csicsvari, J., Hirase, H., Mamiya, A. & Buzsaki, G. Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28, 585–594 (2000).

    Article  Google Scholar 

  26. Andersen, P., Trommald, M. & Jensen, V. Low synaptic convergence of CA3 collaterals on CA1 pyramidal cells suggests few release sites. Adv. Second Messenger Phosphoprotein Res. 29, 340–351 (1994).

    Google Scholar 

  27. Carr, C. E. Processing of temporal information in the brain. Annu. Rev. Neurosci. 16, 223–243 (1993).

    Article  Google Scholar 

  28. Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nature Neurosci. 1, 36–41 (1998).

    Article  Google Scholar 

  29. Varshney, L. R., Sjostrom, P. J. & Chklovskii, D. B. Optimal information storage in noisy synapses under resource constraints. Neuron 52, 409–423 (2006).

    Article  Google Scholar 

  30. Stratford, K. J., Tarczy-Hornoch, K., Martin, K. A., Bannister, N. J. & Jack, J. J. Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382, 258–261 (1996).

    Article  ADS  Google Scholar 

  31. Sterling, P. & Matthews, G. Structure and function of ribbon synapses. Trends Neurosci. 28, 20–29 (2005).

    Article  Google Scholar 

  32. Kara, P., Reinagel, P. & Reid, R. C. Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 635–646 (2000).

    Article  Google Scholar 

  33. MacLean, J. N., Watson, B. O., Aaron, G. B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005).

    Article  Google Scholar 

  34. Hardingham, N. R. & Larkman, A. U. Rapid report: The reliability of excitatory synaptic transmission in slices of rat visual cortex in vitro is temperature dependent. J. Physiol. 507, 249–256 (1998).

    Article  Google Scholar 

  35. Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford Univ. Press, 1999).

    Google Scholar 

  36. Smetters, D. K. & Zador, A. Synaptic transmission: Noisy synapses and noisy neurons. Curr. Biol. 6, 1217–1218 (1996).

    Article  Google Scholar 

  37. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  ADS  Google Scholar 

  38. Shahaf, G. & Marom, S. Learning in networks of cortical neurons. J. Neurosci. 21, 8782–8788 (2001).

    Article  Google Scholar 

  39. Murphy, T. H., Blatter, L. A., Wier, W. G. & Baraban, J. M. Spontaneous synchronous synaptic calcium transients in cultured cortical neurons. J. Neurosci. 12, 4834–4845 (1992).

    Article  Google Scholar 

  40. Wu, J. Y., Guan, L. & Tsau, Y. Propagating activation during oscillations and evoked responses in neocortical slices. J. Neurosci. 19, 5005–5015 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Segal, T. Tlusty, J.-P. Eckmann and S. Jacobi for stimulating discussions and V. Greenberger, J. Soriano and N. Ben-Sinai for their support. We acknowledge partial support by the Clore Center for Biological Physics, the Minerva Stiftung, Munich, Germany, by the Paedagogica Foundation and by the Israel Science Foundation under grant number 993/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Rotem.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 346 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinerman, O., Rotem, A. & Moses, E. Reliable neuronal logic devices from patterned hippocampal cultures. Nature Phys 4, 967–973 (2008). https://doi.org/10.1038/nphys1099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing