Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Criticality in correlated quantum matter

Abstract

At quantum critical points (QCPs) quantum fluctuations exist on all length scales, from microscopic to macroscopic, which, remarkably, can be observed at finite temperatures—the regime to which all experiments are necessarily confined. But how high in temperature can the effects of quantum criticality persist? That is, can physical observables be described in terms of universal scaling functions originating from the QCPs? We answer these questions by examining exact solutions of models of systems with strong electronic correlations and find that QCPs can influence physical properties at surprisingly high temperatures. As a powerful illustration of quantum criticality, we predict that the zero-temperature superfluid density, ρs(0), and the transition temperature, Tc, of the high-temperature copper oxide superconductors are related by Tcρs(0)y, where the exponent y is different at the two edges of the superconducting dome, signifying the presence of the respective QCPs. This relationship can be tested in high-quality crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The scaled free energy Φ(λ1=1, J /T) plotted as a function of 2J /T.
Figure 2: The critical lines of the Ising model in a transverse field with three-spin interaction.
Figure 3: The quantity Φ(λ12=1−λ1, J /T) is plotted as a function of 2J /T for different values of λ1 although maintaining criticality, that is, Δπ=0.
Figure 4: The scaled free energy density minus the ground-state energy density, (fe 0)(ħ c) 2/T 3, of the quantum O(N)-nonlinear σ-model in the limit N →∞ (dotted line).

Similar content being viewed by others

References

  1. Pfeuty, P. & Elliott, R. J. The Ising model with a transverse field. II. Ground state properties. J. Phys. C 4, 2370–2385 (1971).

    Article  ADS  Google Scholar 

  2. Young, A. P. Quantum effects in the renormalization group approach to phase transitions. J. Phys. C 8, L309–L313 (1975).

    Article  ADS  Google Scholar 

  3. Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    Article  ADS  Google Scholar 

  4. Chakravarty, S., Halperin, B. I. & Nelson, D. R. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys. Rev. B 39, 2344–2371 (1989).

    Article  ADS  Google Scholar 

  5. Millis, A. J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    Article  ADS  Google Scholar 

  6. Chubukov, A. V., Sachdev, S. & Jinwu, Y. Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state. Phys. Rev. B 49, 11919–11961 (1994).

    Article  ADS  Google Scholar 

  7. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–229 (2005).

    Article  ADS  Google Scholar 

  8. Pfeuty, P. The one-dimensional Ising model with a transverse field. Ann. Phys. (NY) 57, 79–90 (1970).

    Article  ADS  Google Scholar 

  9. Privman, V. & Fisher, M. E. Universal critical amplitudes in finite-size scaling. Phys. Rev. B 30, 322–327 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  10. Affleck, I. Universal term in the free energy at a critical point and the conformal anomaly. Phys. Rev. Lett. 56, 746–748 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  11. Blöte, H. W. J., Cardy, J. L. & Nightingale, M. P. Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. Phys. Rev. Lett. 56, 742–745 (1986).

    Article  ADS  Google Scholar 

  12. Hirsch, J. E. & Mazenko, G. F. Renormalization-group transformation for quantum lattice systems at zero temperature. Phys. Rev. B 19, 2656–2663 (1979).

    Article  ADS  Google Scholar 

  13. Chubukov, A. V., Sachdev, S. & Sokol, A. Universal behavior of the spin-echo decay rate in La2CuO4 . Phys. Rev. B 49, 9052–9056 (1994).

    Article  ADS  Google Scholar 

  14. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  15. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  ADS  Google Scholar 

  16. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  Google Scholar 

  17. Balents, L., Fisher, M. P. A. & Nayak, C. Nodal liquid theory of the pseudo-gap phase of high-Tc superconductors. Int. J. Mod. Phys. B 12, 1033–1068 (1998).

    Article  ADS  Google Scholar 

  18. Liang, R., Bonn, D. A. & Hardy, W. Lower critical field and superfluid density in highly underdoped YBa2Cu3O6+x single crystals. Phys. Rev. Lett. 94, 117001 (2005).

    Article  ADS  Google Scholar 

  19. Niedermayer, C. et al. Muon spin rotation study of the correlation between Tc andn s /m* in overdoped Tl2Ba2CuO6+δ . Phys. Rev. Lett. 71, 1764–1767 (1993).

    Article  ADS  Google Scholar 

  20. Uemura, Y. J. et al. Magnetic-field penetration depth in Tl2Ba2CuO6+δ in the overdoped regime. Nature 364, 605–607 (1993).

    Article  ADS  Google Scholar 

  21. Bernhard, C. et al. Magnetic penetration depth and condensate density of cuprate high-Tc superconductors determined by muon-spin-rotation experiments. Phys. Rev. B 52, 10488–10498 (1995).

    Article  ADS  Google Scholar 

  22. Panagopoulos, C. et al. Superfluid response in monolayer high-Tc cuprates. Phys. Rev. B 67, 220502 (2003).

    Article  ADS  Google Scholar 

  23. Belitz, D., Kirkpatrick, T. R. & Rollbuhler, J. Breakdown of the perturbative renormalization group at certain quantum critical points. Phys. Rev. Lett. 93, 155701 (2004).

    Article  ADS  Google Scholar 

  24. Rønnow, H. M. et al. Quantum phase transition of a magnet in a spin bath. Science 308, 389–392 (2005).

    Article  ADS  Google Scholar 

  25. Anderson, P. W. In praise of unstable fixed points: the way things actually work. Physica B 318, 28–32 (2002).

    Article  ADS  Google Scholar 

  26. Phillips, P. & Chamon, C. Breakdown of one-paramater scaling in quantum critical scenarios for the high-temperature copper-oxide superconductors. http://arxiv.org/abs/cond-mat/0412179 (2004).

  27. Fradkin, E. & Susskind, L. Order and disorder in gauge systems and magnets. Phys. Rev. D 17, 2637–2658 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  28. Wei, T.-C., Das, D., Mukhopadyay, S., Vishveshwara, S. & Goldbart, P. M. Global entanglement and quantum criticality in spin chains. Phys, Rev. A 71, 060305 (2005).

    Article  ADS  Google Scholar 

  29. Castro Neto, A. H. & Fradkin, E. The thermodynamics of quantum systems and generalizations of Zamolodchikov’s c-theorem. Nucl. Phys. B 400, 525–546 (1993).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank E. Fradkin, S. Sachdev, S. L. Sondhi, and A. P. Young for helpful comments on the manuscript and H. M. Rønnow and D. Bonn for the prepublication copies of refs 1824. This work was supported by the NSF under grant: DMR-0411931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Chakravarty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopp, A., Chakravarty, S. Criticality in correlated quantum matter. Nature Phys 1, 53–56 (2005). https://doi.org/10.1038/nphys105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing