Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A pumped atom laser

Abstract

The atom laser, a bright, coherent matter wave derived from a Bose–Einstein condensate, holds great promise for precision measurement and for fundamental tests of quantum mechanics. But despite significant experimental efforts, no method has been demonstrated to enable continuous and irreversible replenishment of a trapped Bose–Einstein condensate while simultaneously producing a free, coherent atom beam. Here, we report an experiment that uses two spatially separated Bose–Einstein condensates of rubidium in different internal hyperfine states, and show that while continuously output-coupling an atom laser beam from one Bose–Einstein condensate, we can simultaneously and irreversibly pump new atoms from a physically separate cloud into the trapped condensate that forms the lasing mode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the operation of the pumped atom laser.
Figure 2: Pumping of a BEC.
Figure 3: A pumped atom laser.
Figure 4: Illustration of pumping through evaporation.

Similar content being viewed by others

References

  1. Mewes, M.-O. et al. Output coupler for Bose–Einstein condensed atoms. Phys. Rev. Lett. 78, 582–585 (1997).

    Article  ADS  Google Scholar 

  2. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  3. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  Google Scholar 

  4. Bloch, I., Hänsch, T. W. & Esslinger, T. Atom laser with a cw output coupler. Phys. Rev. Lett. 82, 3008–3011 (1999).

    Article  ADS  Google Scholar 

  5. Hagley, E. W. et al. A well-collimated quasi-continuous atom laser. Science 283, 1706–1709 (1999).

    Article  ADS  Google Scholar 

  6. Robins, N. P. et al. Achieving peak brightness in an atom laser. Phys. Rev. Lett. 96, 140403 (2006).

    Article  ADS  Google Scholar 

  7. Guerin, W. et al. Guided quasicontinuous atom laser. Phys. Rev. Lett. 97, 200402 (2006).

    Article  ADS  Google Scholar 

  8. Köhl, M., Hänsch, T. W. & Esslinger, T. Measuring the temporal coherence of an atom laser beam. Phys. Rev. Lett. 87, 160404 (2001).

    Article  ADS  Google Scholar 

  9. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005).

    Article  ADS  Google Scholar 

  10. Savage, C. M., Marksteiner, S. & Zoller, P. in Fundamentals of Quantum Optics III (ed. Ehlotzky, F.) 60–74 (Springer, Berlin, 1993).

    Book  Google Scholar 

  11. Chikkatur, A. P. et al. A continuous source of Bose–Einstein condensed atoms. Science 296, 2193–2195 (2002).

    Article  ADS  Google Scholar 

  12. Schmid, S., Thalhammer, G., Winkler, K., Lang, F. & Hecker Denschlag, J. Long-distance transport of ultracold atoms using a 1D optical lattice. New. J. Phys. 8, 159 (2006).

    Article  ADS  Google Scholar 

  13. Lahaye, T. et al. Realization of a magnetically guided atomic beam in the collisional regime. Phys. Rev. Lett. 93, 093003 (2004).

    Article  ADS  Google Scholar 

  14. Greiner, M., Bloch, I., Hänsch, T. W. & Esslinger, T. Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A 63, 031401 (2001).

    Article  ADS  Google Scholar 

  15. Greiner, A. et al. Loading chromium atoms in a magnetic guide. J. Phys. B 40, F77–F84 (2007).

    Article  ADS  Google Scholar 

  16. Kozuma, M. et al. Phase-coherent amplification of matter waves. Science 286, 2309–2312 (1999).

    Article  Google Scholar 

  17. Inouye, S. et al. Phase-coherent amplification of atomic matter waves. Nature 402, 641–644 (1999).

    Article  ADS  Google Scholar 

  18. Zobay, O. & Nikolopoulos, G. M. Spatial effects in superradiant Rayleigh scattering from Bose–Einstein condensates. Phys. Rev. A 73, 031620 (2006).

    Google Scholar 

  19. Inouye, S. et al. Superradiant Rayleigh scattering from a Bose–Einstein condensate. Science 285, 571–574 (1999).

    Article  Google Scholar 

  20. Schneble, D. et al. Raman amplification of matter waves. Phys. Rev. A 69, 041601(R) (2004).

    Article  ADS  Google Scholar 

  21. Yoshikawa, Y., Sugiura, T., Torii, Y. & Kuga, T. Observation of superradiant Raman scattering in a Bose–Einstein condensate. Phys. Rev. A 69, 041603(R) (2004).

    Article  ADS  Google Scholar 

  22. Ginsberg, N. S., Garner, S. R. & Hau, L. V. Coherent control of optical information with matter wave dynamics. Nature 445, 623–626 (2007).

    Article  Google Scholar 

  23. Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

    Article  ADS  Google Scholar 

  24. Hope, J. J. & Savage, C. M. Stimulated enhancement of cross section by a Bose–Einstein condensate. Phys. Rev. A 54, 3177–3181 (1996).

    Article  ADS  Google Scholar 

  25. Santos, L., Floegel, F., Pfau, T. & Lewenstein, M. Continuous optical loading of a Bose–Einstein condensate. Phys. Rev. A 63, 063408 (2001).

    Article  ADS  Google Scholar 

  26. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, Berlin, 1995).

    MATH  Google Scholar 

  27. Haine, S. A., Hope, J. J., Robins, N. P. & Savage, C. M. Stability of continuously pumped atom lasers. Phys. Rev. Lett. 88, 170403 (2002).

    Article  ADS  Google Scholar 

  28. Ballagh, R. J. & Savage, C. M. in Proc. Thirteenth Physics Summer School (eds Savage, C. M. & Das, M. P.) 153 (World Scientific, Singapore, 2000).

    Google Scholar 

  29. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Hybrid apparatus for Bose–Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases. Rev. Sci. Instrum. 77, 063118 (2006).

    Article  ADS  Google Scholar 

  30. Williams, J., Walser, R., Wieman, C., Cooper, J. & Holland, M. Achieving steady-state Bose–Einstein condensation. Phys. Rev. A 57, 2030–2036 (1998).

    Article  ADS  Google Scholar 

  31. Bhongale, S. & Holland, M. Loading a continuous-wave atom laser by optical pumping techniques. Phys. Rev. A 62, 043604 (2000).

    Article  ADS  Google Scholar 

  32. Ritter, S. et al. Observing the formation of long-range order during Bose–Einstein condensation. Phys. Rev. Lett. 98, 090402 (2007).

    Article  ADS  Google Scholar 

  33. Lahaye, T. et al. Evaporative cooling of a guided rubidium atomic beam. Phys. Rev. A 72, 033411 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) Centres of Excellence Scheme. C.F. acknowledges the support of the Alexander von Humboldt foundation and N.P.R. acknowledges fellowship support by the ARC. All authors gratefully acknowledge the long-term scientific input, encouragement and enthusiasm of C. Savage and J. Hope. We thank S. Haine, H. Bachor and H. Wiseman for their careful reading of the manuscript. N.P.R. and C.F. thank J. Arlt’s Hannover Bose/Fermi group for their generous help in supplying an interim non-Kovar glass cell for the apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas P. Robins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robins, N., Figl, C., Jeppesen, M. et al. A pumped atom laser. Nature Phys 4, 731–736 (2008). https://doi.org/10.1038/nphys1027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing