Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator

Abstract

Demand for more transmission capacity in data centres is increasing due to the continuous growth of Internet traffic. The introduction of external modulators into datacom networks is essential with advanced modulation formats. However, the large footprint of silicon photonics Mach–Zehnder (MZ) modulators will limit further increases in transmission capacity1,2,3,4. To overcome this, we introduce III–V compound semiconductors because the large electron-induced refractive-index change, high electron mobility and low carrier-plasma absorption are beneficial for overcoming the trade-offs among the voltage–length product (VπL), operation speed and insertion loss of Si MZ modulators. Here, we demonstrate an MZ modulator with a 250-µm-long InGaAsP/Si metal-oxide–semiconductor (MOS) capacitor phase-shifter and obtain a VπL of 0.09 Vcm in accumulation mode, an insertion loss of 1.0 dB, a cutoff frequency of 2.2 GHz in depletion mode and a 32-Gbit s–1 modulation with signal pre-emphasis. These results are promising for fabricating high-capacity large-scale photonic integrated circuits with low power consumption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device design.
Figure 2: Calculated performance.
Figure 3: Measured static characteristics.
Figure 4: Measured dynamic characteristics.

Similar content being viewed by others

References

  1. Marris-Morini, D. et al. High speed all-silicon optical modulator. J. Lumines. 121, 387–390 (2006).

    Article  Google Scholar 

  2. Feng, N. N. et al. High speed carrier-depletion modulators with 1.4 V-cm VπL integrated on 0.25 µm silicon-on-insulator waveguides. Opt. Express 18, 7994–7999 (2010).

    Article  ADS  Google Scholar 

  3. Thomson, D. J. et al. 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett. 24, 234–236 (2012).

    Article  ADS  Google Scholar 

  4. Gardes, F. Y. 40 Gb/s silicon photonics modulator for TE and TM polarizations. Opt. Express 19, 11804–11814 (2011).

    Article  ADS  Google Scholar 

  5. Soref, R. A. & Bennett, B. R. Kramers–Krong analysis of electrooptical switching in silicon. SPIE Proc. 704, 32–37 (1987).

    Article  ADS  Google Scholar 

  6. Thomson, D. et al. Total internal reflection optical switches to restrict carrier diffusion in the guiding layer. J. Lightwave Technol. 26, 1288–1294 (2008).

    Article  ADS  Google Scholar 

  7. Green, W. M. J., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

    Article  ADS  Google Scholar 

  8. Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. & Lipson, M. 12.5 Gbit/s carrier-injection-based silicon microring silicon modulator. Opt. Express 15, 430–436 (2007).

    Article  ADS  Google Scholar 

  9. Preston, K., Manipatruni, S., Gondarenko, A., Poitras, C. B. & Lipson, M. Deposited silicon high-speed integrated electro-optic modulator. Opt. Express 17, 5118–5124 (2009).

    Article  ADS  Google Scholar 

  10. Liu, A. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004).

    Article  ADS  Google Scholar 

  11. Liao, L. et al. High speed silicon Mach-Zehnder modulator. Opt. Express 13, 3129–3135 (2005).

    Article  ADS  Google Scholar 

  12. Webster, M. et al. Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers. In Proc. Optical Fiber Commun. Conf. Exhibition W4H.3 (2015).

  13. Bennett, B. R., Soref, R. A. & Del Alamo, J. A. Carrier-induced change in refractive index of InP, GaAs, and InGaAsP. J. Quantum Elecron. 26, 113–122 (1990).

    Article  ADS  Google Scholar 

  14. Chusseau, L. et al. Carrier-induced change due to doping in refractive index of InP: measurements at 1.3 and 1.5 µm. Appl. Phys. Lett. 69, 3054–3056 (1996).

    Article  ADS  Google Scholar 

  15. Botteldooren, D. & Baets, R. Influence of band-gap shrinkage on the carrier-induced refractive index change in InGaAsP. Appl. Phys. Lett. 54, 1989–1991 (1989).

    Article  Google Scholar 

  16. Hilsum, C. Simple empirical relationship between mobility and carrier concentration. Electon. Lett. 10, 259–260 (1974).

    Article  Google Scholar 

  17. Tappura, K. Electrical and optical properties of GaInAsP grown by gas-source molecular beam epitaxy. J. Appl. Phys. 74, 4565–4570 (1993).

    Article  ADS  Google Scholar 

  18. Chen, H.-W., Kuo, Y.-H. & Bowers, J. E. A hybrid silicon–AlGaInAs phase modulator. IEEE Photon. Technol. Lett. 20, 1920–1922 (2008).

    Article  ADS  Google Scholar 

  19. Chen, H.-W., Kuo, Y.-H. & Bowers, J. E. High speed hybrid silicon evanescent Mach-Zehnder modulator and switch. Opt. Express 16, 20571–20576 (2008).

    Article  ADS  Google Scholar 

  20. Liang, D. et al. A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption. In Proc. Optical Fiber Commun. Conf. Exhibition Th1K.4 (2016).

  21. Liang, D., Huang, X., Kurczveil, G., Fiorentino, M. & Beausoleil, R. G. Integrated finely tunable microring laser on silicon. Nat. Photon. 10, 719–722 (2016).

    Article  ADS  Google Scholar 

  22. Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. J. Quantum Electron. 23, 123–129 (1987).

    Article  ADS  Google Scholar 

  23. Adachi, S. Physical Properties of III-V Semiconductor Compounds (Wiley-Interscience, 1992).

    Book  Google Scholar 

  24. Murphy, E. J. et al. Integrated Optical Circuits and Components: Design and Applications (CRC Press, 1999).

    Google Scholar 

  25. Han, J.-H., Takenaka, M. & Takagi, S. Extremely high modulation efficiency III-V/Si hybrid MOS optical modulator fabricated by direct wafer bonding. In Proc. Int. Electron Devices Meeting (IEDM) 25.5.1–25.5.4 (2016).

  26. Shimura, D. et al. High precision Si waveguide devices designed for 1.31 µm and 1.55 µm wavelengths on 300 mm-SOI. In Proc. 11th Int. Conf. Group IV Photonics (GFP) 31–32 (2014).

  27. Abraham, A., Olivier, S., Marris-Morini, D. & Vivien, L. Evaluation of the performances of a silicon optical modulator based on a silicon-oxide-silicon capacitor. In Proc. 11th Int. Conf. Group IV Photonics (GFP) 3–4 (2014).

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.H. calculated, designed, fabricated and measured the devices, and prepared the manuscript. T.A. contributed to making the device layout and assisted in measuring the device. K.H. contributed to fabricating the III–V semiconductor layer. K.T. performed the III–V semiconductor wafer bonding onto Si. T.F. performed the epitaxial growth of the III–V semiconductor layer. T.T. contributed to fabricating the Si layer. T.K. assisted in the calculations. H.F. contributed to analysing the measurement results and supervised the project. S.M. discussed the fabrication process, contributed to analysing the measurement results, supervised the project and assisted in revising the manuscript.

Corresponding author

Correspondence to Tatsurou Hiraki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraki, T., Aihara, T., Hasebe, K. et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nature Photon 11, 482–485 (2017). https://doi.org/10.1038/nphoton.2017.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing