Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant optical gain in a single-crystal erbium chloride silicate nanowire

Subjects

Abstract

Rare-earth optical materials with large optical gain are of great importance for a wide variety of applications in photonics and quantum information due to their long carrier lifetimes and quantum coherence times, especially in the realization of efficient lasers and amplifiers. Until now, such materials have achieved a gain of less than a few dB cm–1, rendering them unsuitable for applications in nanophotonic integrated circuits. Here, we report the results of the signal enhancement and transmission experiments on a single-crystal erbium chloride silicate nanowire. Our experiments demonstrate that a net material gain over 100 dB cm–1 at wavelengths around 1,530 nm is possible due to the nanowire's single-crystalline material quality and its high erbium concentration. Our results establish that such rare-earth-compound nanowires are a potentially important class of nanomaterials for a variety of applications including, for example, subwavelength-scale optical amplifiers and lasers for integrated nanophotonics, and quantum information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental layout of the signal enhancement measurement.
Figure 2: Signal enhancement measurement results.
Figure 3: Transmission experiment layout.
Figure 4: Determination of the absorption coefficient.

Similar content being viewed by others

References

  1. Mørk, J., Nielsen, M. L. & Berg, T. W. The dynamics of semiconductor optical amplifiers: modeling and applications. Opt. Photon. News 14, 42–48 (2003).

    Article  ADS  Google Scholar 

  2. Pollnau, M. Rare-earth-ion-doped waveguide lasers on a silicon chip. Proc. SPIE 9359, 935910–935917 (2015).

    Article  Google Scholar 

  3. Bradley, J. D. B. et al. 170 GBit/s transmission in an erbium-doped waveguide amplifier on silicon. Opt. Express 17, 22201–22208 (2009).

    Article  ADS  Google Scholar 

  4. Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

    Article  ADS  Google Scholar 

  5. Mears, R., Reekie, L., Jauncey, I. & Payne, D. Low-noise erbium-doped fibre amplifier operating at 1.54 μm. Electron. Lett. 23, 1026–1028 (1987).

    Article  Google Scholar 

  6. Giles, C. R. & Desurvire, E. Modeling erbium-doped fiber amplifiers. J. Lightwave Technol. 9, 271–283 (1991).

    Article  ADS  Google Scholar 

  7. Wysocki, P. F., Judkins, J. B., Espindola, R. P., Andrejco, M. & Vengsarkar, A. M. Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter. IEEE Photon. Technol. Lett. 9, 1343–1345 (1997).

    Article  ADS  Google Scholar 

  8. Desurvire, E., Giles, C. R. & Simpson, J. R. Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at λ = 1.53 μm. J. Lightwave Technol. 7, 2095–2104 (1989).

    Article  ADS  Google Scholar 

  9. Desurvire, E. Analysis of noise figure spectral distribution in erbium doped fiber amplifiers pumped near 980 and 1480 nm. Appl. Opt. 29, 3118–3125 (1990).

    Article  ADS  Google Scholar 

  10. Giles, C. R., Simpson, J. R. & Desurvire, E. Transient gain and cross talk in erbium-doped fiber amplifiers. Opt. Lett. 14, 880–882 (1989).

    Article  ADS  Google Scholar 

  11. Mears, R. J., Reekie, L., Poole, S. B. & Payne, D. N. Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm. Electron. Lett. 22, 159–160 (1986).

    Article  Google Scholar 

  12. Kafka, J. D., Hall, D. W. & Baer, T. Mode-locked erbium-doped fiber laser with soliton pulse shaping. Opt. Lett. 14, 1269–1271 (1989).

    Article  ADS  Google Scholar 

  13. Yan, Y. C., Faber, A. J., De Waal, H., Kik, P. G. & Polman, A. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm. Appl. Phys. Lett. 71, 2922–2924 (1997).

    Article  ADS  Google Scholar 

  14. Huang, W. et al. Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier. IEEE Photon. Technol. Lett. 14, 959–961 (2002).

    Article  ADS  Google Scholar 

  15. Saini, S. et al. Er2O3 for high-gain waveguide amplifiers. J. Electron. Mater. 33, 809–814 (2004).

    Article  ADS  Google Scholar 

  16. Zheng, J. et al. Highly efficient photoluminescence of Er2SiO5 films grown by reactive magnetron sputtering method. J. Lumines. 130, 411–414 (2010).

    Article  ADS  Google Scholar 

  17. Miniscalco, W. J. Erbium-doped glasses for fiber amplifiers at 1500 nm. J. Lightwave Technol. 9, 234–250 (1991).

    Article  ADS  Google Scholar 

  18. Hwang, B. C. et al. Erbium-doped phosphate glass fibre amplifiers with gain per unit length of 2.1 dB/cm. Electron. Lett. 35, 1007–1009 (1999).

    Article  Google Scholar 

  19. Bradley, J. D. B. et al. Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3 Er3+ optical amplifiers on silicon. J. Opt. Soc. Am. B 27, 187–196 (2010).

    Article  ADS  Google Scholar 

  20. Miritello, M. et al. Optical and structural properties of Er2O3 films grown by magnetron sputtering. J. Appl. Phys. 100, 013502 (2006).

    Article  ADS  Google Scholar 

  21. Michael, C. P. et al. Growth, processing, and optical properties of epitaxial Er2O3 on silicon. Opt. Express 16, 19649–19666 (2008).

    Article  ADS  Google Scholar 

  22. Choi, H.-J. et al. Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence. Nano Lett. 5, 2432–2437 (2005).

    Article  ADS  Google Scholar 

  23. Wang, B., Guo, R., Wang, L., Wang, X. & Zhou, Z. 1.53 μm electroluminescence of erbium excited by hot carriers in ErRE (RE= Yb, Y) silicates. In 9th Int. Conf. Group IV Photonics (GFP) 72–74 (IEEE, 2012).

  24. Miritello, M. et al. Efficient luminescence and energy transfer in erbium silicate thin films. Adv. Mater. 19, 1582–1588 (2007).

    Article  Google Scholar 

  25. Michael, C. P. Optical Material Characterization Using Microdisk Cavities PhD thesis, California Institute of Technology (2009).

    Google Scholar 

  26. Isshiki, H., Ushiyama, T. & Kimura, T. Demonstration of ErSiO superlattice crystal waveguide toward optical amplifiers and emitters. Phys. Status Solidi A 205, 52–55 (2008).

    Article  ADS  Google Scholar 

  27. Pan, A. et al. Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength. Opt. Mater. Express 1, 1202–1209 (2011).

    Article  ADS  Google Scholar 

  28. Yin, L. et al. Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material. Appl. Phys. Lett. 100, 241905 (2012).

    Article  ADS  Google Scholar 

  29. Yin, L., Ning, H., Turkdogan, S., Liu, Z. & Ning, C. Z. Significant increase of photoluminescence lifetime at 1.5 μm in erbium chloride silicate nanowires. In Conf. Lasers and Electro-Optics (CLEO) CTh3D.4 (OSA, 2012).

  30. Liu, Z., Yin, L. & Ning, C. Z. Extremely large signal enhancement in an erbium chloride silicate single-crystal nanowire. In Conf. Lasers and Electro-Optics (CLEO) CF1I.6 (OSA, 2013).

  31. Yin, L., Shelhammer, D., Zhao, G., Liu, Z. & Ning, C. Z. Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material. Appl. Phys. Lett. 103, 121902 (2013).

    Article  ADS  Google Scholar 

  32. Liu, Z., Zhao, G., Yin, L. & Ning, C. Z. Demonstration of net gain in an erbium chloride silicate single nanowire waveguide. In Conf. Lasers and Electro-Optics (CLEO) SM4H.4 (OSA, 2014).

  33. Liu, Z., Sun, H., Li, Y., Zhang, J. & Ning, C. Z. Fabrication of 1D photonic crystal on a single erbium chloride silicate nanowire and microcavity laser design. In Conf. Lasers and Electro-Optics (CLEO) SW4I.2 (OSA, 2015).

  34. Shukla, P. & Kaur, K. P. Performance analysis of EDFA for different pumping configurations at high data rate. Int. J. Eng. Adv. Technol. 2, 487–490 (2013).

    Google Scholar 

  35. Suh, K. et al. Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides. Opt. Express 18, 7724–7731 (2010).

    Article  ADS  Google Scholar 

  36. Han, H.-S., Seo, S.-Y., Shin, J. H. & Park, N. Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier. Appl. Phys. Lett. 81, 3720–3722 (2002).

    Article  ADS  Google Scholar 

  37. Tong, L. M. et al. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett. 5, 259–262 (2005).

    Article  ADS  Google Scholar 

  38. Wang, W. H., Yang, Q., Fan, F. R., Xu, H. X. & Wang, Z. L. Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett. 11, 1603–1608 (2011).

    Article  ADS  Google Scholar 

  39. Isshiki, H. & Kimura, T. Toward small size waveguide amplifiers based on erbium silicate for silicon photonics. IEICE Trans. Electron. E91-C, 138–144 (2008).

    Article  ADS  Google Scholar 

  40. Sun, H. et al. Record-high optical gain in a single crystal erbium chloride silicate nanowire at 1532 nm. In Conf. Lasers and Electro-Optics (CLEO) SM4R.3 (OSA, 2016).

  41. Ning, C. Z. Semiconductor nanolasers. Phys. Status Solidi B 247, 774–788 (2010).

    Google Scholar 

  42. Wang, L., Guo, R., Wang, B., Wang, X. & Zhou, Z. Hybrid Si3N4-Er/Yb/Y silicate waveguide amplifier with 1.25 dB/cm internal gain. In 9th Int. Conf. Group IV Photonics (GFP) 249–251 (IEEE, 2012).

  43. Van den Hoven, G. N. et al. Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon. Appl. Phys. Lett. 68, 1886–1888 (1996).

    Article  ADS  Google Scholar 

  44. Wang, X. J., Yuan, G., Isshiki, H., Kimura, T. & Zhou, Z. Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide. J. Appl. Phys. 108, 013506 (2010).

    Article  ADS  Google Scholar 

  45. Wang, W. et al. High gain submicrometer optical amplifier at near-infrared communication band. Phys. Rev. Lett. 115, 027403 (2015).

    Article  ADS  Google Scholar 

  46. Feng, X. et al. Comment on “High gain submicrometer optical amplifier at near-infrared communication band”. Phys. Rev. Lett. 117, 219701 (2016).

    Article  ADS  Google Scholar 

  47. Wang, X. et al. Wang et al. reply. Phys. Rev. Lett. 117, 219702 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the 985 University Project of China and Tsinghua University Initiative Scientific Research Program (no. 20141081296). The research at Arizona State University was initially supported by the Air Force Office of Scientific Research (FA9550-10-1-0444, G. Pomrenke) and later partially supported by the National Science Foundation's EAGER Program (award ID 1228512, J. Zavada). We thank G. Zhao of Arizona State University for help in the initial measurement of absorption based on the upconversion method.

Author information

Authors and Affiliations

Authors

Contributions

C.Z.N. guided the research and supervised the overall project. H.S. L.Y., Z.L. and C.Z.N. designed the experiment. L.Y. and S.Z. fabricated the samples. H.S. and Y.Z. built the measurement set-up and carried out the experiments. L.Y., Z.L., F.F., X.F. and Y.L. performed the theoretical calculations and numerical simulations. H.S., L.Y., Z.L. and C.Z.N. performed the data analysis and wrote the manuscript. All authors contributed to the discussions.

Corresponding author

Correspondence to C. Z. Ning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Yin, L., Liu, Z. et al. Giant optical gain in a single-crystal erbium chloride silicate nanowire. Nature Photon 11, 589–593 (2017). https://doi.org/10.1038/nphoton.2017.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing