Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes

Abstract

Electrically pumped subwavelength plasmonic lasers (spasers) have attracted significant interest in recent years, but their properties are still not well understood, especially in comparison to the ubiquitous all-dielectric semiconductor microlasers (vertical-cavity surface-emitting lasers, VCSELs). Our theoretical analysis reveals that, from the fundamental physics point of view, a spaser does not differ from a semiconductor laser, as most of the energy is contained in the oscillations of electrons (free versus bound) and not in the electromagnetic field. At the same time, due to large losses in the metal, the technical characteristics of a spaser differ significantly from the VCSEL in that the spaser has at least three orders of magnitude higher threshold current density, four to five orders of magnitude wider linewidth, and a speed that is only a few times higher than in a VCSEL or an incoherent surface-plasmon-emitting diode. These results should assist researchers in making an informed choice of emitters for various particular optoelectronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of energy distribution in a VCSEL and spaser.
Figure 2: Comparison of operational characteristics of VCSEL and spaser.

Similar content being viewed by others

References

  1. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  2. Stockman, M. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

    Article  ADS  Google Scholar 

  3. Khurgin, J. B. & Sun, G. Scaling of losses with size and wavelength in nanoplasmonics. Appl. Phys. Lett. 99, 211106 (2011).

    Article  ADS  Google Scholar 

  4. Khurgin, J. B. & Boltasseva, A. Reflecting upon the losses in plasmonics and metamaterials. MRS Bull. 37, 768–779 (2012).

    Article  Google Scholar 

  5. Khurgin, J. B. & Sun, G. Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium. Appl. Phys. Lett. 100, 011105 (2012).

    Article  ADS  Google Scholar 

  6. Ding, K. et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys. Rev. B 85, 041301(R) 10.1103/PhysRevB.85.041301(2012).

    Article  ADS  Google Scholar 

  7. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  ADS  Google Scholar 

  8. Stockman, M. I. Spasers explained. Nature Photon. 2, 327–329 (2008).

    Article  ADS  Google Scholar 

  9. Oulton, R. F. Surface plasmon lasers: sources of nanoscopic light. Mater. Today 15, 26–34 (2012).

    Article  Google Scholar 

  10. Kwon, S.-H. et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679–3683 (2010).

    Article  ADS  Google Scholar 

  11. Lakhani, A. et al. Plasmonic crystal defect nanolaser. Opt. Express 19, 18237–18245 (2011).

    Article  ADS  Google Scholar 

  12. Lee, J. H. et al. Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers. Opt. Express 19, 21524–21531 (2011).

    Article  ADS  Google Scholar 

  13. Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photon. 4, 395–399 (2010).

    Article  ADS  Google Scholar 

  14. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    Article  ADS  Google Scholar 

  15. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  16. Khurgin, J. B. & Sun, G. Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence. Opt. Express 20, 15309–15325 (2012).

    Article  ADS  Google Scholar 

  17. Khurgin, J. B. & Sun, G. How small can ‘nano’ be in a nanolaser? Nanophotonics 1, 3–8 (2012).

    Article  ADS  Google Scholar 

  18. Li, D. & Stockman, M. I. Electric spaser in the extreme quantum limit. Phys. Rev. Lett. 110, 106803 (2013).

    Article  ADS  Google Scholar 

  19. Deppe, D. G. et al. Low-threshold vertical-cavity surface-emitting lasers based on oxide-confinement and high contrast distributed Bragg reflectors. IEEE J. Sel. Top. Quantum Electron. 3, 893–904 (1997).

    Article  ADS  Google Scholar 

  20. Chang, Y.-C., Wang, C. S. & Coldren, L. A. High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation. Electron. Lett. 43, 1022–1023 (2007).

    Article  Google Scholar 

  21. Ni, C.-Y. A. & Chuang, S. L. Theory of high-speed nanolaser and nano LEDs. Opt. Express 20, 16453 10.1364/OE.20.016450(2012).

    Article  ADS  Google Scholar 

  22. Lau, E. K., Lakhani, A., Tucker, R. S. & Wu, M. C. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express 17, 7790 (2009).

    Article  ADS  Google Scholar 

  23. Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits 143 (Wiley, 1995).

    Google Scholar 

  24. Björk, G., Karlsson, A. & Yamamoto, Y. Definition of a laser threshold. Phys. Rev. A 50, 1675–1680 (1994).

    Article  ADS  Google Scholar 

  25. Takeda, K. et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nature Photon. 7, 569–575 (2013).

    Article  ADS  Google Scholar 

  26. Zappe, H. P. et al. Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection. Appl. Opt. 39, 2475–2479 (2000).

    Article  ADS  Google Scholar 

  27. Grillot, F. et al. Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs–GaAs quantum-dot lasers. IEEE J. Quantum Electron. 44, 946–951 (2008).

    Article  ADS  Google Scholar 

  28. Lau, E. K. et al. Strong optical injection-locked semiconductor lasers demonstrating >100-GHz resonance frequencies and 80-GHz intrinsic bandwidths. Opt. Express 16, 6609–6618 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.B.K. acknowledges support from the Mid-Infra-Red Technologies for Health and the Environment Research Center (National Science Foundation grant no. MIRTHE NSF ERC; EEC0540832).

Author information

Authors and Affiliations

Authors

Contributions

J.B.K. performed analytical derivations and G.S. carried out numerical analysis.

Corresponding author

Correspondence to Jacob B. Khurgin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurgin, J., Sun, G. Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes. Nature Photon 8, 468–473 (2014). https://doi.org/10.1038/nphoton.2014.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing