Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extreme ultraviolet radiation with coherence time greater than 1 s

Abstract

Many atomic and molecular systems of fundamental interest possess resonance frequencies in the extreme ultraviolet (XUV) where laser technology is limited and radiation sources have traditionally lacked long-term phase coherence. Recent breakthroughs in XUV frequency comb technology have demonstrated spectroscopy with unprecedented resolution at the megahertz level, but even higher resolutions are desired for future applications in precision measurement. By characterizing heterodyne beats between two XUV comb sources, we demonstrate the capability for sub-hertz spectral resolution. This corresponds to coherence times >1 s at photon energies up to 20 eV, more than six orders of magnitude longer than previously reported. This work establishes the ability of creating highly phase-stable radiation in the XUV with performance rivalling that of visible light. Furthermore, by direct sampling of the phase of the XUV light originating from high-harmonic generation, we demonstrate precise measurements of attosecond strong-field physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of experiment and harmonic spectra.
Figure 2: Linewidth scaling of comb teeth versus harmonic order.
Figure 3: Demonstration of sub-hertz coherence in the XUV.
Figure 4: Measurement of intensity-dependent dipole phase.

Similar content being viewed by others

References

  1. Udem, Th. et al. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  2. Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

    Article  ADS  Google Scholar 

  3. Kessler, T. et al. A sub-40-mHz-linewidth laser based on a Silicon single-crystal optical cavity. Nature Photon. 6, 687–692 (2012).

    Article  ADS  Google Scholar 

  4. Bishof, M. et al. Optical spectrum analyzer at the atomic quantum projection noise limit. Phys. Rev. Lett. 111, 093604 (2013).

    Article  ADS  Google Scholar 

  5. Cundiff, S. & Ye, J. Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  6. Attwood, D. T. Soft X-rays and Extreme Ultraviolet Radiation (Cambridge Univ. Press, 2007).

    Google Scholar 

  7. Berengut, J. C. et al. Electron–hole transitions in multiply charged ions for precision laser spectroscopy and searching for variations in α. Phys. Rev. Lett. 106, 210802 (2011).

    Article  ADS  Google Scholar 

  8. Eyler, E. E. et al. Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy. Eur. Phys. J. D 48, 43–55 (2007).

    Article  ADS  Google Scholar 

  9. Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

    Article  ADS  Google Scholar 

  10. Herrmann, M. et al. Feasibility of coherent XUV spectroscopy on the 1S–2S transition in singly ionized helium. Phys. Rev. A 79, 052505 (2009).

    Article  ADS  Google Scholar 

  11. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  12. Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).

    Article  ADS  Google Scholar 

  13. Emma, P. et al. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  14. Suckewer, S. & Skinner, C. Soft X-ray lasers and their applications. Science 247, 1553–1557 (1990).

    Article  ADS  Google Scholar 

  15. Bellini, M. et al. Temporal coherence of ultrashort high-order harmonic pulses. Phys. Rev. Lett. 81, 297–300 (1989).

    Article  ADS  Google Scholar 

  16. Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    Article  ADS  Google Scholar 

  17. Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications. Opt. Express 19, 23483–23493 (2011).

    Article  ADS  Google Scholar 

  18. Kandula, D. Z. et al. Extreme ultraviolet frequency comb metrology. Phys. Rev. Lett. 105, 063001 (2010).

    Article  ADS  Google Scholar 

  19. Morgenweg, J. et al. Ramsey-comb spectroscopy with intense ultrashort laser pulses. Nature Phys. 10, 30–33 (2013).

    Article  ADS  Google Scholar 

  20. Jones, R. J. et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article  ADS  Google Scholar 

  21. Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article  ADS  Google Scholar 

  22. Mills, A. et al. XUV frequency combs via femtosecond enhancement cavities. J. Phys. B. 45, 142001 (2012).

    Article  ADS  Google Scholar 

  23. Jones, R. J. & Ye, J. Femtosecond pulse amplification by coherent addition in a passive optical cavity. Opt. Lett. 27, 1848–1850 (2002).

    Article  ADS  Google Scholar 

  24. Ruehl, A. et al. 80 W, 120 fs Yb-fiber frequency comb. Opt. Lett. 35, 3015–3017 (2010).

    Article  ADS  Google Scholar 

  25. Allison, T. K. et al. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 193903 (2011).

    Article  Google Scholar 

  26. Carlson, D. R. et al. Intracavity ionization and pulse formation in femtosecond enhancement cavities. Opt. Lett. 36, 2991–2993 (2011).

    Article  ADS  Google Scholar 

  27. Vidal-Dasilva, M. et al. Electron-beam deposited boron coatings for the extreme ultraviolet. Appl. Opt. 47, 2926–2930 (2008).

    Article  ADS  Google Scholar 

  28. Walls, F. L. & Demarchi, A. RF spectrum of a signal after frequency multiplication; measurement and comparison with a simple calculation. IEEE Trans. Instrum. Meas. 24, 210–217 (1975).

    Article  Google Scholar 

  29. Hall, J. L. in Proceedings of the International School of Physics—Enrico Fermi (eds Arimondo, E., Phillips, W. D. & Strumia, F.) 671–702 (North-Holland, 1992).

    Google Scholar 

  30. Telle, H. R. in Frequency Control of Semiconductor Lasers (eds. Ohtsu, M.) 137–167 (Wiley, 1996).

    Google Scholar 

  31. Schibli, T. R. et al. Optical frequency comb with sub-millihertz linewidth and more than 10 W average power. Nature Photon. 2, 355–359 (2008).

    Article  ADS  Google Scholar 

  32. Yost, D. C. et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nature Phys. 5, 815–820 (2009).

    Article  ADS  Google Scholar 

  33. Lewenstein, M. et al. Phase of the atomic polarization in high-order harmonic generation. Phys. Rev. A 52, 4747–4754 (1995).

    Article  ADS  Google Scholar 

  34. Zaïr, A. et al. Quantum path interferences in high-order harmonic generation. Phys. Rev. Lett. 100, 143902 (2008).

    Article  ADS  Google Scholar 

  35. Corsi, C. et al. Direct interferometric measurement of the atomic dipole phase in high-order harmonic generation. Phys. Rev. Lett. 97, 023901 (2006).

    Article  ADS  Google Scholar 

  36. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  37. Sansone, G. et al. Measurement of harmonic phase differences by interference of attosecond light pulses. Phys. Rev. Lett. 94, 193903 (2005).

    Article  ADS  Google Scholar 

  38. Chang, Z. Fundamentals of Attosecond Optics 1st edn (CRC Press, 2011).

    Google Scholar 

  39. Hostetter, J. et al. Semiclassical approaches to below-threshold harmonics. Phys. Rev. A 82, 23401 (2010).

    Article  ADS  Google Scholar 

  40. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  41. Agåker, M. et al. Novel instruments for ultra-soft X-ray emission spectroscopy. Nucl. Instrum. Meth. A 601, 213–219 (2009).

    Article  ADS  Google Scholar 

  42. Keilmann, F. et al. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    Article  ADS  Google Scholar 

  43. Hinnen, P. et al. XUV-laser spectroscopy of HD at 92–98 nm. Phys. Rev. A 52, 4425–4433 (1995).

    Article  ADS  Google Scholar 

  44. Shafir, D. et al. Resolving the time when an electron exits a tunneling barrier. Nature 485, 343–346 (2013).

    Article  ADS  Google Scholar 

  45. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  46. Moll, K. D. et al. Output coupling methods for cavity-based high-harmonic generation. Opt. Express 14, 8189–8197 (2006).

    Article  ADS  Google Scholar 

  47. Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nature Photon. 7, 608–612 (2013).

    Article  ADS  Google Scholar 

  48. Yost, D. C. et al. Efficient output coupling of intracavity high-harmonic generation. Opt. Lett. 33, 1099–1101 (2008).

    Article  ADS  Google Scholar 

  49. Lee, J. et al. Optimizing intracavity high harmonic generation for XUV fs frequency combs. Opt. Express 19, 23315–23326 (2011).

    Article  ADS  Google Scholar 

  50. Carstens, H. et al. Megawatt-scale average-power ultrashort pulses in an enhancement cavity. Opt. Lett. 39, 2595–2598 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge technical contributions and collaboration from A. Ruehl, I. Hartl and M. E. Fermann. This work was supported by National Institute of Standards and Technology, Air Force Office of Scientific Research and the National Science Foundation Physics Frontier Center at JILA.

Author information

Authors and Affiliations

Authors

Contributions

C.B., T.K.A., A.C., D.C.Y. and J.Y. contributed to the design and planning of the experiment. C.B., L.H. and F.L. acquired the data. C.B., T.K.A., L.H., F.L. and J.Y. analysed the data. All authors discussed the results and contributed to the writing of the final manuscript.

Corresponding authors

Correspondence to Craig Benko or Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benko, C., Allison, T., Cingöz, A. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nature Photon 8, 530–536 (2014). https://doi.org/10.1038/nphoton.2014.132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing