Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequency-agile, rapid scanning spectroscopy

Abstract

Challenging applications in trace gas measurements require low uncertainty and high acquisition rates1,2,3,4. Many cavity-enhanced spectroscopies exhibit significant sensitivity and potential5,6, but their scanning rates are limited by reliance on either mechanical or thermal frequency tuning7. Here, we present frequency-agile, rapid scanning spectroscopy (FARS) in which a high-bandwidth electro-optic modulator steps a selected laser sideband to successive optical cavity modes. This approach involves no mechanical motion and allows for a scanning rate of 8 kHz per cavity mode, a rate that is limited only by the cavity response time itself. Unlike rapidly frequency-swept techniques8,9,10,11, FARS does not reduce the measurement duty cycle, degrade the spectrum's frequency axis or require an unusual cavity configuration. FARS allows for a sensitivity of 2 × 10−12 cm−1 Hz−1/2 and a tuning range exceeding 70 GHz. This technique shows promise for fast and sensitive trace gas measurements and studies of chemical kinetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depiction of the principles of FARS.
Figure 2: Typical spectra measured with our rapid scanning approach using the narrow-linewidth fibre laser.

Similar content being viewed by others

References

  1. Chen, H. et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech. 3, 375–386 (2010).

    Article  Google Scholar 

  2. Risby, T. H. & Solga, S. F. Current status of clinical breath analysis. Appl. Phys. B 85, 421–426 (2006).

    Article  ADS  Google Scholar 

  3. Hinkov, B. et al. Time-resolved spectral characteristics of external-cavity quantum cascade lasers and their application to stand-off detection of explosives. Appl. Phys. B 100, 253–260 (2010).

    Article  ADS  Google Scholar 

  4. Keppler, F., Hamilton, J. T. G., Brass, M. & Rockmann, T. Methane emissions from terrestrial plants under aerobic conditions. Nature 439, 187–191 (2006).

    Article  ADS  Google Scholar 

  5. Long, D. A. et al. Frequency-stabilized cavity ring-down spectroscopy. Chem. Phys. Lett. 536, 1–8 (2012).

    Article  ADS  Google Scholar 

  6. Bucher, C. R., Lehmann, K. K., Plusquellic, D. F. & Fraser, G. T. Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy. Appl. Opt. 39, 3154–3164 (2000).

    Article  ADS  Google Scholar 

  7. Cygan, A. et al. High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters. Phys. Rev. A 85, 022508 (2012).

    Article  ADS  Google Scholar 

  8. Debecker, I., Mohamed, A. K. & Romanini, D. High-speed cavity ringdown spectroscopy with increased spectral resolution by simultaneous laser and cavity tuning. Opt. Express 13, 2906–2915 (2005).

    Article  ADS  Google Scholar 

  9. He, Y. & Orr, B. J. Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser. Appl. Phys. B 79, 941–945 (2004).

    Article  ADS  Google Scholar 

  10. Motto-Ros, V., Morville, J. & Rairoux, P. Mode-by-mode optical feedback: cavity ringdown spectroscopy. Appl. Phys. B 87, 531–538 (2007).

    Article  ADS  Google Scholar 

  11. Morville, J., Kassi, S., Chenevier, M. & Romanini, D. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl. Phys. B 80, 1027–1038 (2005).

    Article  ADS  Google Scholar 

  12. Gerecht, E., Douglass, K. O. & Plusquellic, D. F. Chirped-pulse terahertz spectroscopy for broadband trace gas sensing. Opt. Express 19, 8973–8984 (2011).

    Article  ADS  Google Scholar 

  13. Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

    Article  ADS  Google Scholar 

  14. Spence, T. G. et al. A laser-locked cavity ring-down spectrometer employing an analog detection scheme. Rev. Sci. Instrum. 71, 347–353 (2000).

    Article  ADS  Google Scholar 

  15. Ye, J., Ma, L. S. & Hall, J. L. Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy. J. Opt. Soc. Am. B 15, 6–15 (1998).

    Article  ADS  Google Scholar 

  16. Huang, H. F. & Lehmann, K. K. Sensitivity limit of rapidly swept continuous wave cavity ring-down spectroscopy. J. Phys. Chem. A 115, 9411–9421 (2011).

    Article  Google Scholar 

  17. O'Keefe, A. & Deacon, D. A. G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988).

    Article  ADS  Google Scholar 

  18. Pan, H. et al. Laser-locked, continuously tunable high resolution cavity ring-down spectrometer. Rev. Sci. Instrum. 82, 103110 (2011).

    Article  ADS  Google Scholar 

  19. Bucher, C. R., Lehmann, K. K., Plusquellic, D. F. & Fraser, G. T. Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy. Appl. Opt. 39, 3154–3164 (2000).

    Article  ADS  Google Scholar 

  20. Del'Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon. 3, 529–533 (2009).

    Article  ADS  Google Scholar 

  21. Rautian, S. G. & Sobelman, I. I. Effect of collisions on Doppler broadening of spectral lines. Sov. Phys. Usp. 9, 701–716 (1967).

    Article  ADS  Google Scholar 

  22. Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectr. Rad. Transfer 110, 533–572 (2009).

    Article  ADS  Google Scholar 

  23. Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

    Article  ADS  Google Scholar 

  24. Huang, H. & Lehmann, K. Noise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy. Appl. Phys. B 94, 355–366 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the NIST Greenhouse Gas Measurements and Climate Research Program. G-W. Truong was supported at NIST by an Australian Fulbright Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.F.P., K.O.D. and S.E.M. conceived the idea of rapid single-frequency broadband electro-optic modulator-based tuning and demonstrated its utility in absorption spectroscopy. D.A.L. and J.T.H. adapted the idea for application to high-finesse ring-down systems and designed the present implementation. G.-W.T., D.A.L. and J.T.H. performed the experiments. D.A.L. and G.-W.T. performed the data analysis. D.A.L. wrote the manuscript. D.A.L. and G.-W.T. prepared the Supplementary Information. All authors provided technical insight and assisted in the editing of the manuscript.

Corresponding authors

Correspondence to D. F. Plusquellic or D. A. Long.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 752 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truong, GW., Douglass, K., Maxwell, S. et al. Frequency-agile, rapid scanning spectroscopy. Nature Photon 7, 532–534 (2013). https://doi.org/10.1038/nphoton.2013.98

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing