Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A matterless double slit

Abstract

Double slits provide incoming particles with a choice. Those that survive passage through the slits have chosen from two possible paths, which interfere to distribute them in a wave-like manner. Such wave–particle duality1 continues to be challenged2,3,4,5 and investigated in a broad range of disciplines with electrons6, neutrons7, helium atoms8, C60 fullerenes9, Bose–Einstein condensates10 and biological molecules11. All variants have hitherto involved material constituents. We present a matterless double-slit scenario in which photons generated from virtual electron–positron pair annihilation in head-on collisions of a probe laser field with two ultra-intense laser beams form a double-slit interference pattern. Such electromagnetic fields are predicted to induce material-like behaviour in vacuum, supporting elastic scattering between photons12,13. Our double-slit scenario presents, on the one hand, a realizable method with which to observe photon–photon scattering and, on the other hand, demonstrates the possibility of both controlling light with light and non-locally investigating features of the quantum vacuum structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A matterless double-slit set-up.
Figure 2: Light–light diffraction pattern.

Similar content being viewed by others

References

  1. de Broglie, L. Waves and quanta. Nature 112, 540 (1923).

    Article  ADS  Google Scholar 

  2. Scully, M. O., Englert, B.-G. & Walther, H. Quantum optical tests of complementarity. Nature 351, 111–116 (1991).

    Article  ADS  Google Scholar 

  3. Wiseman, H. & Harrison, F. Uncertainty over complementarity? Nature 377, 584 (1995).

    Article  ADS  Google Scholar 

  4. Lindner, F. et al. Attosecond double-slit experiment. Phys. Rev. Lett. 95, 040401 (2005).

    Article  ADS  Google Scholar 

  5. Kiffner, M., Evers, J. & Keitel, C. H. Quantum interference enforced by time–energy complementarity. Phys. Rev. Lett. 96, 100403 (2006).

    Article  ADS  Google Scholar 

  6. Jönsson, C. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. 161, 454–474 (1961).

    Article  ADS  Google Scholar 

  7. Zeilinger, A. et al. Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 60, 1067–1073 (1988).

    Article  ADS  Google Scholar 

  8. Carnal, O. & Mlynek, J. Young's double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991).

    Article  ADS  Google Scholar 

  9. Arndt, M. et al. Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999).

    Article  ADS  Google Scholar 

  10. Andrews, M. R. et al. Observation of interference between two bose condensates. Science 275, 637–641 (1997).

    Article  Google Scholar 

  11. Hackermüller, L. et al. Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003).

    Article  ADS  Google Scholar 

  12. Di Piazza, A., Hatsagortsyan, K. Z. & Keitel, C. H. Light diffraction by a strong standing electromagnetic wave. Phys. Rev. Lett. 97, 083603 (2006).

    Article  ADS  Google Scholar 

  13. Lundström, E. et al. Using high-power lasers for detection of elastic photon–photon scattering. Phys. Rev. Lett. 96, 083602 (2006).

    Article  ADS  Google Scholar 

  14. Heisenberg, W. & Euler, H. Photon acceleration in vacuum. Z. Phys. 98, 714–732 (1936).

    Article  ADS  Google Scholar 

  15. European Light Infrastructure (ELI). ELI Scientific Case. <http://www.extreme-light-infrastructure.eu/pictures/ELI-scientific-case-id17.pdf> (2007).

  16. High Power Laser Energy Research (HiPER). HiPER Technical Background and Conceptual Design Report. <http://www.hiperlaser.org/docs/tdr/HiPERTDR2.pdf> (2007).

  17. Young, T. Experiments and calculations relative to physical optics. Phil. Trans. R. Soc. Lond. 94, 1–16 (1804).

    ADS  Google Scholar 

  18. Nakatsutsumi, M. et al. Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008).

    Article  Google Scholar 

  19. Groom, D. E. et al. Quantum efficiency of a back-illuminated ccd imager: an optical approach. Proc. SPIE 3649, 80–90 (1999).

    Article  ADS  Google Scholar 

  20. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997).

    Book  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge helpful discussions with J. Evers, R. Moshammer and G. Sansone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Di Piazza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, B., Di Piazza, A. & Keitel, C. A matterless double slit. Nature Photon 4, 92–94 (2010). https://doi.org/10.1038/nphoton.2009.261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing