Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultralong quantum optical data storage using an optical locking technique

Abstract

Several types of quantum memory protocols have been presented over the last ten years, including photon echoes1,2,3,4, off-resonant Raman scattering5,6, ultraslow light-based quantum mapping processes7,8,9,10 and resonant Raman optical echoes11. These quantum optical memory protocols are limited by a storage time on a scale as short as milliseconds, determined by the spin phase decay time of the storage medium. For applications of long-distance quantum communications, a quantum repeater composed of quantum entanglement swapping and quantum memory must be used12,13. Achieving longer storage times in quantum memory therefore brings a definite advantage to applications of quantum repeaters for long-distance quantum communications. Here, we propose a quantum optical data storage protocol to extend the storage time by several orders of magnitude beyond the conventional limitation of the order of milliseconds. The present ultralong quantum optical storage technique is achieved by introducing an optical locking method to the resonant Raman optical echo protocol11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Numerical simulations of triple-bit quantum optical data storage based on reversible spin inhomogeneous broadening.
Figure 2: Ultralong quantum optical memory protocol using an optical locking method.
Figure 3: Population density variation after the first πR pulse.
Figure 4: Coherence retrieval efficiency.

Similar content being viewed by others

References

  1. Moiseev, S. A. & Ham, B. S. Photon echo quantum memory with efficient multipulse readings. Phys. Rev. A 70, 063809 (2004).

    Article  ADS  Google Scholar 

  2. Alexander, A. L., Longdell, J. J., Sellars, M. J. & Manson, N. B. Photon echoes produced by switching electric fields. Phys. Rev. Lett. 96, 043602 (2006).

    Article  ADS  Google Scholar 

  3. Kraus, B., Tittel, W., Gisin, N., Nilsson, M., Kroll, S. & Cirac, J. I. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening. Phys. Rev. A 73, 020302 (2006).

    Article  ADS  Google Scholar 

  4. de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light–matter interface at the single-photon level. Nature 456, 773–777 (2008).

    Article  ADS  Google Scholar 

  5. Van der Wal, C. H. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003).

    Article  ADS  Google Scholar 

  6. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurasek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–485 (2004).

    Article  ADS  Google Scholar 

  7. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  8. Philips, F. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  Google Scholar 

  9. Kocharovskaya, O., Rostovtsev, Y. & Scully, M. O. Stopping light via hot atoms. Phys. Rev. Lett. 86, 628–631 (2001).

    Article  ADS  Google Scholar 

  10. Turukhin, S. V. et al. Observation of ultraslow stored light pulses in a solid. Phys. Rev. Lett. 88, 023602 (2002).

    Article  ADS  Google Scholar 

  11. Ham, B. S., Shahriar, M. S., Kim, M. K. & Hemmer, P. R. Spin coherence excitation and rephasing with optically shelved atoms. Phys. Rev. B 58, R11825–R11828 (1998).

    Article  ADS  Google Scholar 

  12. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communications with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  13. Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).

    Article  ADS  Google Scholar 

  14. Ham, B. S., Shahriar, M. S., Kim, M. K. & Hemmer, P. R. Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth doped solid. Opt. Lett. 22, 1849–1851 (1997).

    Article  ADS  Google Scholar 

  15. Mossberg, T. W. Time-domain frequency-selective optical data storage. Opt. Lett. 7, 77–79 (1982).

    Article  ADS  Google Scholar 

  16. Fleischhauer, M. & Lukin, M. D. Dark state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Article  ADS  Google Scholar 

  17. Gray, H. R., Whitley, R. M. & Stroud, Jr, C. R. Coherent trapping of atomic populations. Opt. Lett. 3, 218–220 (1978).

    Article  ADS  Google Scholar 

  18. Ham, B. S. Reversible quantum optical data storage based on resonant Raman optical field excited spin coherence. Opt. Exp. 16, 14304–14313 (2008).

    Article  ADS  Google Scholar 

  19. Kurnit, N. A., Abella, I. D. & Hartmann, S. R. Observation of a photon echo. Phys. Rev. Lett. 13, 567–570 (1964).

    Article  ADS  Google Scholar 

  20. Novikova, I., Philips, N. B. & Gorshkov, A. V. Optimal light storage with full pulse-shape control. Phys. Rev. A 78, 021802 (2008).

    Article  ADS  Google Scholar 

  21. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  22. Sargent III, M., Scully, M. O. & Lamb, Jr, W. E. Laser Physics 79–95 (Addison-Wesley, 1974).

    Google Scholar 

  23. Ham, B. S. A novel method of all-optical switching: quantum router. ETRI J. 23, 106–110 (2001).

    Article  Google Scholar 

  24. Equall, R. W., Cone, R. L. & Macfarlane, R. M. Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5 . Phys. Rev. B 52, 3963–3969 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Creative Research Initiative Program (Center for Photon Information Processing) by MEST via KOSEF, S. Korea. The author thanks M.D. Lukin for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung S. Ham.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ham, B. Ultralong quantum optical data storage using an optical locking technique. Nature Photon 3, 518–522 (2009). https://doi.org/10.1038/nphoton.2009.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing