Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses

Abstract

The resolution of far-field optical microscopy stagnated for a century, but a quest began in the 1990s leading to nanoscale imaging of transparent fluorescent objects in three dimensions. Important elements in this pursuit were the synthesis of the aperture of two opposing lenses and the modulation or switching of the fluorescence of adjacent markers. The first element provided nearly isotropic three-dimensional resolution by improving the axial resolution by three- to sevenfold, and the second enabled the diffraction barrier to be overcome. Here, we review recent progress in the synergistic combination of these two elements which non-invasively provide an isotropic diffraction-unlimited three-dimensional resolution in transparent objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maximizing 3D resolution in far-field fluorescence nanoscopy by expanding the illumination and/or the detection aperture of the microscope with opposing lenses.
Figure 2: PSF shaping in a targeted fluorophore switching modality.
Figure 3: STED microscopy provides in situ access to 3D morphological information of nanostructured block copolymers.
Figure 4: Noninvasive 3D far-field fluorescence nanoscopy of the interior of mitochondria within integral cells.
Figure 5: 3D fluorescence nanoscopy with interferometric PALM.
Figure 6: 3D far-field fluorescence nanoscopy by STORM within mammalian (BS-C-1) cells.

Similar content being viewed by others

References

  1. Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge University Press, 2002).

    Google Scholar 

  2. Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland Science, 2002).

    Google Scholar 

  3. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).

    Article  ADS  Google Scholar 

  4. Lewis, A., Isaacson, M., Harootunian, A. & Murray, A. Development of a 500 A resolution light microscope. Ultramicroscopy 13, 227–231 (1984).

    Article  Google Scholar 

  5. Novotny, L. & Hecht, B. Principles of nano-optics (Cambridge University Press, 2006).

    Book  Google Scholar 

  6. Kawata, S. Inouye, Y., & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nature Photon. 3, 388–394 (2009).

    Article  ADS  Google Scholar 

  7. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  8. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  9. Hell, S. W. & Kroug, M. Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995).

    Article  ADS  Google Scholar 

  10. Hell, S. W. in Topics in Fluorescence Spectroscopy Vol. 5 (ed. J. R. Lakowicz) 361–422 (Plenum Press, 1997).

    Google Scholar 

  11. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution limit broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    Article  ADS  Google Scholar 

  12. Dyba, M. & Hell, S. W. Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002).

    Article  ADS  Google Scholar 

  13. Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnol. 21, 1347–1355 (2003).

    Article  Google Scholar 

  14. Heintzmann, R., Jovin, T. M. & Cremer, C. Saturated patterned excitation microscopy — A concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599–1609 (2002).

    Article  ADS  Google Scholar 

  15. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  ADS  Google Scholar 

  16. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED-microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    Article  ADS  Google Scholar 

  17. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  18. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Meth. 3, 793–796 (2006).

    Article  Google Scholar 

  19. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  ADS  Google Scholar 

  20. Egner, A. et al. Fluorescence nanoscopy in whole cells by asnychronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007).

    Article  ADS  Google Scholar 

  21. Hell, S. W. Double-scanning confocal microscope. European patent 0491289 (1990/1992).

    Google Scholar 

  22. Hell, S. & Stelzer, E. H. K. Properties of a 4Pi-confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992).

    Article  ADS  Google Scholar 

  23. Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc. SPIE 2412, 147–156 (1995).

    Article  ADS  Google Scholar 

  24. Hell, S. W., Schrader, M. & van der Voort, H. T. M. Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range. J. Microsc. 185, 1–5 (1997).

    Article  Google Scholar 

  25. Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195, 10–16 (1999).

    Article  Google Scholar 

  26. Shao, L. et al. I5S: Wide-field light microscopy with 100 nm scale resolution in three dimensions. Biophys. J. 94, 4971–4983 (2008).

    Article  ADS  Google Scholar 

  27. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  ADS  Google Scholar 

  28. Gugel, H. et al. Cooperative 4Pi excitation and detection yields 7-fold sharper optical sections in live cell microscopy. Biophys. J. 87, 4146–4152 (2004).

    Article  ADS  Google Scholar 

  29. Bewersdorf, J., Bennett, B. T. & Knight, K. L. H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proc. Natl Acad. Sci. USA 103, 18137–18142 (2006).

    Article  ADS  Google Scholar 

  30. Gustafsson, M. G. L. & Clarke, J. Scanning force microscope springs optimized for optical-beam deflection and with tips made by controlled fracture. J. Appl. Phys. 76, 172–181 (1994).

    Article  ADS  Google Scholar 

  31. Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl Acad. Sci. USA 102, 17565–17569 (2005).

    Article  ADS  Google Scholar 

  32. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    Article  ADS  Google Scholar 

  33. Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20313 (2007).

    Article  ADS  Google Scholar 

  34. Juette, M. F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nature Meth. 5, 527–529 (2008).

    Article  Google Scholar 

  35. Bates, M., Huang, B., Dempsey, G. P. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    Article  ADS  Google Scholar 

  36. Zhuang, X. Nano-imaging with STORM. Nature Photon. 3, 365–367 (2009).

    Article  ADS  Google Scholar 

  37. Rittweger, E., Wildanger, D. & Hell, S. W. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhys. Lett. 86, 14001–14006 (2009).

    Article  ADS  Google Scholar 

  38. Biteen, J. S. et al. Super-resolution imaging in live caulobacter crescentus cells using photoswitchable EYFP. Nature Meth. 5, 947–949 (2008).

    Article  Google Scholar 

  39. Pavani, S. R. P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

    Article  ADS  Google Scholar 

  40. van de Linde, S., Kasper, R., Heilemann, M. & Sauer, M. Photoswitching microscopy with standard fluorophores. Appl. Phys. B 93, 725–731 (2008).

    Article  ADS  Google Scholar 

  41. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  Google Scholar 

  42. Dyba, M., Jakobs, S. & Hell, S. W. Immunofluorescence stimulated emission depletion microscopy. Nature Biotechnol. 21, 1303–1304 (2003).

    Article  Google Scholar 

  43. Middendorff, C.v., Egner, A., Geisler, C., Hell, S. W. & Schönle, A. Isotropic 3D nanoscopy based on single emitter switching. Opt. Express 16, 20774–20788 (2008).

    Article  Google Scholar 

  44. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009).

    Article  ADS  Google Scholar 

  45. Schmidt, R. et al. Spherical nanosized focal spot unravels the interior of cells. Nature Meth. 5, 539–544 (2008).

    Article  Google Scholar 

  46. Lemmer, P. et al. SPDM — Light microscopy with single molecule resolution at the nanoscale. Appl. Phys. B 93, 1–12 (2008).

    Article  ADS  Google Scholar 

  47. Egner, A., Schrader, M. & Hell, S. W. Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi- microscopy. Opt. Commun. 153, 211–217 (1998).

    Article  ADS  Google Scholar 

  48. Ullal, C. K., Schmidt, R., Hell, S. W. & Egner, A. Block copolymer nanostructures mapped by far-field optics. Nano Lett. 9, 2497–2500 (2009).

    Article  ADS  Google Scholar 

  49. Schmidt, R. et al. Mitochondrial cristae revealed with focused light. Nano Lett. 9, 2508–2510 (2009).

    Article  ADS  Google Scholar 

  50. Harke, B., Ullal, C. K., Keller, J. & Hell, S. W. Three-dimensional nanoscopy of colloidal crystals. Nano Lett. 8, 1309–1313 (2008).

    Article  ADS  Google Scholar 

  51. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  ADS  Google Scholar 

  52. Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nature Meth. 5, 1047–1052 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Substantial contributions to the isoSTED imaging applications reviewed in this paper are from Chaitanya Ullal (block co-polymers), as well as Christian Wurm and Stefan Jakobs (mitochondria). We also thank Andreas Schönle, Claas v. Middendorf, and Jan Keller for helpful discussions and Jaydev Jethwa for critical reading. This work was supported by grants of the Deutsche Forschungsgemeinschaft to A.E. and S.W.H (SFB 755).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan W. Hell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hell, S., Schmidt, R. & Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photon 3, 381–387 (2009). https://doi.org/10.1038/nphoton.2009.112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing