Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electro–optically tunable microring resonators in lithium niobate

Abstract

Optical microresonators have recently attracted growing attention in the photonics community1. Their applications range from quantum electrodynamics to sensors and filtering devices for optical telecommunication systems, where they will probably become an essential building block2. Integration of nonlinear and electro–optical properties in resonators represents a very stimulating challenge, as it would incorporate new and more advanced functionality. Lithium niobate is an excellent candidate material, being an established choice for electro–optic and nonlinear optical applications. Here we report on the first realization of optical microring resonators in submicrometre thin films of lithium niobate. High-index-contrast films are produced by an improved crystal-ion-slicing and bonding technique using benzocyclobutene. The rings have radius R = 100 µm, and their transmission spectrum has been tuned using the electro–optic effect. These results open new possibilities for the use of lithium niobate in chip-scale integrated optical devices and nonlinear optical microcavities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-section of a lithium niobate microring resonator structure.
Figure 2: Structured lithium niobate microring resonator.
Figure 3: Transmission spectrum of a ring resonator of radius 100 µm.
Figure 4: Electro–optic shift of the resonance curve.

Similar content being viewed by others

References

  1. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  2. Michelotti, F., Driessen, A. & Bertolotti, M. Microresonators as Building Blocks for VLSI Photonics (AIP Conference Proceedings, 2004).

  3. Kaminow, I. & San, T. Optical Fiber Telecommunications IV (Academic, San Diego, 2002).

    Google Scholar 

  4. Marcuse, D. Light Transmission Optics (Van Nostrand, New York, 1972).

    Google Scholar 

  5. Little, B. E., Chu, S. T., Pan, W. & Kokubun, Y. Microring resonator arrays for VLSI photonics. IEEE Photon. Technol. Lett. 12, 323–325 (2000).

    Article  ADS  Google Scholar 

  6. Van, V. et al. Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Sel. Top. Quant. Electron. 8, 705–713 (2002).

    Article  ADS  Google Scholar 

  7. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro–optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  8. Niehusmann, J., Vrckel, A., Bolivar, P., Wahlbrink, T. & Kurz, H. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 29, 2861–2863 (2004).

    Article  ADS  Google Scholar 

  9. Zhou, L. J. & Poon, A. W. Silicon electro–optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators. Opt. Express 14, 6851–6857 (2006).

    Article  ADS  Google Scholar 

  10. Xu, Q. F., Schmidt, B., Shakya, J. & Lipson, M. Cascaded silicon micro-ring modulators for WDM optical interconnections. Opt. Express 14, 9430–9435 (2006).

    ADS  Google Scholar 

  11. Little, B. E. et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

    Article  ADS  Google Scholar 

  12. Leinse, A., Diemeer, M. B. J., Rousseau, A. & Driessen, A. A novel high-speed polymeric EO modulator based on a combination of a microring resonator and an MZI. IEEE Photon. Technol. Lett. 17, 2074–2076 (2005).

    Article  ADS  Google Scholar 

  13. Tazawa, H. et al. Ring resonator-based electrooptic polymer traveling-wave modulator. J. Lightwave Technol. 24, 3514–3519 (2006).

    Article  ADS  Google Scholar 

  14. Liu, A. et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427, 615–618 (2004).

    Article  ADS  Google Scholar 

  15. Wong, K. Properties of Lithium Niobate (INSPEC, London, 2002).

  16. Jazbinsek, M. & Zgonik, M. Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics. Appl. Phys. B 74, 407–414 (2002).

    ADS  Google Scholar 

  17. Radojevic, A. M. et al. Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films. Appl. Phys. Lett. 74, 3197–3199 (1999).

    Article  ADS  Google Scholar 

  18. Rabiei, P. & Günter, P. Optical and electro–optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett. 85, 4603–4605 (2004).

    Article  ADS  Google Scholar 

  19. Rabiei, P. & Steier, W. H. Lithium niobate ridge waveguides and modulators fabricated using smart guide. Appl. Phys. Lett. 86, 161115 (2005).

    Article  ADS  Google Scholar 

  20. Park, Y. B., Min, B., Vahala, K. J. & Atwater, H. A. Integration of single-crystal LiNbO3 thin film on silicon by laser irradiation and ion implantation-induced layer transfer. Adv. Mater. 18, 1533–1536 (2006).

    Article  Google Scholar 

  21. Burdeaux, D., Townsend, P., Carr, J. & Garrou, P. Benzocyclobutene (BCB) dielectrics for the fabrication of high-density, thin-film multichip modules. J. Electron. Mater. 19, 1357–1364 (1990).

    Article  ADS  Google Scholar 

  22. Kane, C. F. & Krchnavek, R. R. Benzocyclobutene optical wave-guides. IEEE Photon. Technol. Lett. 7, 535–537 (1995).

    Article  ADS  Google Scholar 

  23. Rezzonico, D., Guarino, A., Herzog, C., Jazbinsek, M. & Günter, P. High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics. IEEE Photon. Technol. Lett. 18, 865–867 (2006).

    Article  ADS  Google Scholar 

  24. Ramadan, T. A., Levy, M. & Osgood, R. M. Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films. Appl. Phys. Lett. 76, 1407–1409 (2000).

    Article  ADS  Google Scholar 

  25. Roth, R. M. et al. Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation. Appl. Phys. Lett. 89, 112906 (2006).

    Article  ADS  Google Scholar 

  26. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Nonlinear optics and crystalline whispering gallery mode cavities. Appl. Phys. Lett. 92, 043903 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the AIM team at the Research Center Rossendorf, Germany, for performing the He+ implantation of LiNbO3 wafers in the frame of the RITA Program, Contract No. 025646. We also thank S. Reidt for deposition of the electrodes, J. Hajfler for professional polishing of the samples, and C. Herzog, M. Jazbinsek and L. Mutter for helpful discussions. This work was supported by ETH Research Grant TH-13/05-2.

Author information

Authors and Affiliations

Authors

Contributions

The project was planned by A.G., G.P. and P.G. The experiments were performed by A.G., G.P., D.R. and R.D. Data were analysed by A.G.

Corresponding author

Correspondence to Andrea Guarino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures 1-4 (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guarino, A., Poberaj, G., Rezzonico, D. et al. Electro–optically tunable microring resonators in lithium niobate. Nature Photon 1, 407–410 (2007). https://doi.org/10.1038/nphoton.2007.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing