Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic manipulation and separation of individual semiconducting and metallic nanowires

Abstract

The synthesis of nanowires has advanced in the past decade to the point where a vast range of insulating, semiconducting and metallic materials1 are available for use in integrated, heterogeneous optoelectronic devices at nanometre scales2. However, a persistent challenge has been the development of a general strategy for the manipulation of individual nanowires with arbitrary composition. Here we report that individual semiconducting and metallic nanowires with diameters below 20 nm are addressable with forces generated by optoelectronic tweezers3. Using 100,000 times less optical power density than optical tweezers, optoelectronic tweezers are capable of transporting individual nanowires with speeds four times greater than the maximum speeds achieved by optical tweezers. A real-time array of silver nanowires is formed using photopatterned virtual electrodes, demonstrating the potential for massively parallel assemblies. Furthermore, optoelectronic tweezers enable the separation of semiconducting and metallic nanowires, suggesting a broad range of applications for the separation and heterogeneous integration of one-dimensional nanoscale materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OET manipulation of single silicon nanowire.
Figure 2: OET manipulation of silver nanowires.
Figure 3: Dynamic separation of semiconducting and metallic nanowires.
Figure 4: Large-scale assembly of nanowires.

Similar content being viewed by others

References

  1. Xia, Y. N. et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  Google Scholar 

  2. Pauzauskie, P. J. & Yang, P. Nanowire photonics. Mater. Today 9, 36–45 (2006).

    Article  Google Scholar 

  3. Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

    Article  ADS  Google Scholar 

  4. Sirbuly, D. J., Law, M., Yan, H. Q. & Yang, P. D. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 109, 15190–15213 (2005).

    Article  Google Scholar 

  5. Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004).

    Article  ADS  Google Scholar 

  6. Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).

    Article  ADS  Google Scholar 

  7. He, R. & Yang, P. Giant piezoresistance effect in silicon nanowires. Nature Nanotech. 1, 42–46 (2006).

    Article  ADS  Google Scholar 

  8. Martensson, T. et al. Epitaxial III–V nanowires on silicon. Nano Lett. 4, 1987–1990 (2004).

    Article  ADS  Google Scholar 

  9. Ahn, J. H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006).

    Article  ADS  Google Scholar 

  10. Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  ADS  Google Scholar 

  11. Messer, B., Song, J. H. & Yang, P. D. Microchannel networks for nanowire patterning. J. Am. Chem. Soc. 122, 10232–10233 (2000).

    Article  Google Scholar 

  12. Yang, P. Nanotechnology: Wires on water. Nature 425, 243–244 (2003).

    Article  ADS  Google Scholar 

  13. Tao, A. et al. Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003).

    Article  ADS  Google Scholar 

  14. Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004).

    Article  ADS  Google Scholar 

  15. Sirbuly, D. J. et al. Optical routing and sensing with nanowire assemblies. Proc. Natl Acad. Sci. USA 102, 7800–7805 (2005).

    Article  ADS  Google Scholar 

  16. Pauzauskie, P. J. et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater. 5, 97–101 (2006).

    Article  ADS  Google Scholar 

  17. Krupke, R., Hennrich, F., von Lohneysen, H. & Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

    Article  ADS  Google Scholar 

  18. Smith, P. A. et al. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

    Article  ADS  Google Scholar 

  19. Lee, S. Y. et al. An electrical characterization of a hetero-junction nanowire (NW) pn diode (n-GaN NW/p-Si) formed by dielectrophoresis alignment. Physica E 36, 194–198 (2007).

    Article  ADS  Google Scholar 

  20. Jones, T. B. Electromechanics of Particles (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  21. Ohta, A. T. et al. Dynamic cell and microparticle control via optoelectronic tweezers. J. Micromech. S. 16, 491–499 (2007).

    Article  Google Scholar 

  22. Neale, S. L., Mazilu, M., Wilson, J. I. B., Dholakia, K. & Krauss, T. F. The resolution of optical traps created by light induced dielectrophoresis (LIDEP). Opt. Express 15, 12619–12626 (2007).

    Article  ADS  Google Scholar 

  23. Decker, C. Kinetic study and new applications of UV radiation curing. Macromol. Rapid Commun. 23, 1067–1093 (2002).

    Article  Google Scholar 

  24. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000).

    Article  ADS  Google Scholar 

  25. Albrecht, D. R., Tsang, V. L., Saha, R. L. & Bhatia, S. N. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5, 111–118 (2005).

    Article  Google Scholar 

  26. Liu, V. A. & Bhatia, S. N. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdev. 4, 257–266 (2002).

    Article  Google Scholar 

  27. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  ADS  Google Scholar 

  28. Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).

    Article  Google Scholar 

  29. Goldberger, J., Hochbaum, A. I., Fan, R. & Yang, P. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 6, 973–977 (2006).

    Article  ADS  Google Scholar 

  30. Yerushalmi, R., Ho, J. C., Jacobson, Z. A. & Javey, A. Generic nanomaterial positioning by carrier and stationary phase design. Nano Lett. 7, 2764–2768 (2007).

    Article  ADS  Google Scholar 

  31. Ohta, A. T. et al. Optically controlled cell discrimination and trapping using optoelectronic tweezers. IEEE J. Sel. Top. Quant. Electron. 13, 235–243 (2007).

    Article  ADS  Google Scholar 

  32. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  ADS  Google Scholar 

  33. Crocker, J. C. & Weeks, E. R. Particle tracking using IDL 〈http://www.physics.emory.edu/˜weeks/idl/〉.

  34. Hochbaum, A. I., Fan, R., He, R. & Yang, P. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457–460 (2005).

    Article  ADS  Google Scholar 

  35. Peng, K. Q., Yan, Y. J., Gao, S. P. & Zhu, J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv. Mater. 14, 1164–1167 (2002).

    Article  Google Scholar 

  36. Sun, Y. G., Gates, B., Mayers, B. & Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165–168 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (NIH) through the NIH Roadmap for Medical Research (Grant no. PN2 EY018228), Defense Advanced Research Project Agency (DARPA) UPR-CONSRT, the Institute for Cell Mimetic Space Exploration (CMISE), the Dreyfus Foundation and the US Department of Energy (P.Y.). P.J.P. and A.T.O. thank the National Science Foundation (NSF) for a graduate research fellowship. Work at the Lawrence Berkeley National Laboratory was supported by the Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering of the US Department of Energy, under contract no. DE-AC02-05CH11231. We thank the National Center for Electron Microscopy for the use of their facilities, A. Javey, R. Yerushalmi, Hsan-Yin Hsu, S. Neale, E. Sun and J. Valley for helpful discussions and suggestions, and also Jiaxing Huang, R. Diaz and E. Garnett for silver and silicon nanowire samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peidong Yang or Ming C. Wu.

Supplementary information

Supplementary Information

Supplementary video S1 (MOV 6054 kb)

Supplementary Information

Supplementary video S2 (MOV 6972 kb)

Supplementary Information

Supplementary video S3 (MOV 1082 kb)

Supplementary Information

Supplementary video S4 (MOV 622 kb)

Supplementary Information

Supplementary video S5 (MOV 7640 kb)

Supplementary Information

Supplementary video S6 (MOV 6399 kb)

Supplementary Information

Supplementary video S7 (MOV 7581 kb)

Supplementary Information

Supplementary information and figures S1-S7 (PDF 3507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamshidi, A., Pauzauskie, P., Schuck, P. et al. Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nature Photon 2, 86–89 (2008). https://doi.org/10.1038/nphoton.2007.277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing