Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mode-locked quantum-dot lasers

Abstract

Semiconductor lasers are convenient and compact sources of light, offering highly efficient operation, direct electrical control and integration opportunities. In this review we describe how semiconductor quantum-dot structures can provide an efficient means of amplifying and generating ultrafast (of the order of 100 fs), high-power and low-noise optical pulses, with the potential to boost the repetition rate of the pulses to beyond 1 THz. Such device designs are opening up new possibilities in ultrafast science and technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The density of states in quantum dots, D(E).
Figure 2: The spectral bandwidth of the amplified femtosecond pulses (squares: data; red line: polynomial fit) and the amplified spontaneous-emission spectrum from the QD device (solid blue line).
Figure 3
Figure 4: Pump–probe measurements of the carrier lifetime of a QD waveguided device.
Figure 5: Optical spectra corresponding to the mode-locked operation in the ground (red) and excited (blue) states.

Similar content being viewed by others

References

  1. Spence, D. E., Kean, P. N. & Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42–44 (1991).

    Article  ADS  Google Scholar 

  2. Femtosecond Technology: From Basic Research to Application Technology (eds Kamiya, T., Saito, F., Wada, O. & Yajima, H.) Part III, 59–174 (Springer, Berlin, 1999).

  3. Vasil'ev, P. Ultrafast Diode Lasers: Fundamentals and Applications Ch. 4, 95–150 (Artech House, Boston, 1995).

    Google Scholar 

  4. Avrutin, E. A., Marsh, J. H. & Portnoi, E. L. Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications. IEE Proc. Optoelectron. 147, 251–278 (2000).

    Article  Google Scholar 

  5. Dingle, R. & Henry, C. H. Quantum effects in heterostructure lasers. US Patent 3,982,207 (1976).

  6. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    Article  ADS  Google Scholar 

  7. Kovsh, A. R. et al. Long-wavelength (1.3–1.5 μm) quantum dot lasers based on GaAs. Proc. SPIE 5349, 31–45 (2004).

    Article  ADS  Google Scholar 

  8. Liu, H. Y. et al. High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents. IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).

    Article  ADS  Google Scholar 

  9. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N. & Roux, G. L. Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices. Appl. Phys. Lett. 47, 1099–1101 (1985).

    Article  ADS  Google Scholar 

  10. Ustinov, V. M., Zhukov, A. E., Egorov, A. Y. & Maleev, N. A. Quantum Dot Lasers (Oxford Univ. Press, New York, 2003).

    Book  Google Scholar 

  11. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  ADS  Google Scholar 

  12. Gaponenko, S. V. Optical Properties of Semiconductor Nanocrystals Ch. 5, 84–152 (Cambridge Univ. Press, Cambridge, 1998).

    Book  Google Scholar 

  13. Yoffe, A. D. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1–208 (2001).

    Article  ADS  Google Scholar 

  14. Lagatsky, A. A. et al. Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber. Opt. Commun. 241, 449–454 (2004).

    Article  ADS  Google Scholar 

  15. Lagatsky, A. A. et al. PbS quantum-dot-doped glass for efficient passive mode locking in a CW Yb: KYW laser. IEEE Photon. Technol. Lett. 18, 259–261 (2006).

    Article  ADS  Google Scholar 

  16. Bakonyi, Z. et al. High-gain quantum-dot semiconductor optical amplifier for 1300 nm. IEEE J. Quant. Electron. 39, 1409–1414 (2003).

    Article  ADS  Google Scholar 

  17. Rafailov, E. U. et al. Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier. IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).

    Article  ADS  Google Scholar 

  18. Ray, S. K. et al. Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells. IEEE Photon. Technol. Lett. 18, 58–60 (2006).

    Article  ADS  Google Scholar 

  19. Rossetti, M. et al. High-power quantum-dot superluminescent diodes with p-doped active region. IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).

    Article  ADS  Google Scholar 

  20. Choi, M. T., Lee, W., Kim, J. M. & Delfyett, P. J. Ultrashort, high-power pulse generation from a master oscillator power amplifier based on external cavity mode locking of a quantum-dot two-section diode laser. Appl. Phys. Lett. 87, 221107 (2005).

    Article  ADS  Google Scholar 

  21. Laemmlin, M. et al. Distortion-free optical amplification of 20–80 GHz modelocked laser pulses at 1.3 μm using quantum dots. Electron. Lett. 42, 697–699 (2006).

    Article  Google Scholar 

  22. Mukai, K., Ohtsuka, N., Shoji, H. & Sugawara, M. Phonon bottleneck in self-formed InxGa1-xAs/GaAs quantum dots by electroluminescence and time-resolved photoluminescence. Phys. Rev. B 54, R5243–R5246 (1996).

    Article  ADS  Google Scholar 

  23. Borri, P., Schneider, S., Langbein, W. & Bimberg, D. Ultrafast carrier dynamics in InGaAs quantum dot materials and devices. J. Opt. A 8, S33–S46 (2006).

    Article  ADS  Google Scholar 

  24. Rafailov, E. U. et al. Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers. IEEE Photon. Technol. Lett. 16, 2439–2441 (2004).

    Article  ADS  Google Scholar 

  25. Borri, P. et al. Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE J. Sel. Top. Quant. Electron. 6, 544–551 (2000).

    Article  ADS  Google Scholar 

  26. Malins, D. B. et al. Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm. Appl. Phys. Lett. 89, 171111 (2006).

    Article  ADS  Google Scholar 

  27. Lagatsky, A. A. et al. in Tech. Dig., Baltimore, USA, CLEO CTuC6 (OSA, Washington DC, 2007).

    Google Scholar 

  28. McWilliam, A. et al. Quantum-dot-based saturable absorber for femtosecond mode-locked operation of a solid-state laser. Opt. Lett. 31, 1444–1446 (2006).

    Article  ADS  Google Scholar 

  29. Lagatsky, A. A. et al. Quantum-dot-based saturable absorber with p-n junction for mode-locking of solid-state lasers. IEEE Photon. Technol. Lett. 17, 294–296 (2005).

    Article  ADS  Google Scholar 

  30. Keller, U. & Tropper, A. C. Passively modelocked surface-emitting semiconductor lasers. Phys. Rep. 429, 67–120 (2006).

    Article  ADS  Google Scholar 

  31. Aschwanden, A. et al. 2.1-W picosecond passively mode-locked external-cavity semiconductor laser. Opt. Lett. 30, 272–274 (2005).

    Article  ADS  Google Scholar 

  32. Garnache, A. et al. in Proc. 14th Indium Phosphide and Related Mater. Conf. 311–314 (IEEE, Stockholm, 2002).

    Google Scholar 

  33. Lorenser, D. et al. Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers. Appl. Phys. B 79, 927–932 (2004).

    Article  ADS  Google Scholar 

  34. Lorenser, D. et al. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power. IEEE J. Quant. Electron. 42, 838–847 (2006).

    Article  ADS  Google Scholar 

  35. Herda, R. et al. Semiconductor quantum-dot saturable absorber mode-locked fiber laser. IEEE Photon. Technol. Lett. 18, 157–159 (2006).

    Article  ADS  Google Scholar 

  36. Klimov, V. I. & McBranch, D. W. Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals. Phys. Rev. Lett. 80, 4028–4031 (1998).

    Article  ADS  Google Scholar 

  37. Okuno, T., Masumoto, Y., Ikezawa, M., Ogawa, T. & Lipovskii, A. A. Size-dependent picosecond energy relaxation in PbSe quantum dots. Appl. Phys. Lett. 77, 504–506 (2000).

    Article  ADS  Google Scholar 

  38. Wundke, K. et al. PbS quantum-dot-doped glasses for ultrashort-pulse generation. Appl. Phys. Lett. 76, 10–12 (2000).

    Article  ADS  Google Scholar 

  39. Malyarevich, A. M. et al. Nonlinear spectroscopy of PbS quantum-dot-doped glasses as saturable absorbers for the mode locking of solid-state lasers. J. Appl. Phys. 100, 23108 (2006).

    Article  Google Scholar 

  40. Zhang, J. Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B 104, 7239–7253 (2000).

    Article  Google Scholar 

  41. Padilha, L. A. et al. Ultrafast optical switching with CdTe nanocrystals in a glass matrix. Appl. Phys. Lett. 86, 161111 (2005).

    Article  ADS  Google Scholar 

  42. Flytzanis, C. Nonlinear optics in mesoscopic composite materials. J. Phys. B 38, S661–S679 (2005).

    Article  ADS  Google Scholar 

  43. Klimov, V. I. & Karavanskii, V. A. Mechanisms for optical nonlinearities and ultrafast carrier dynamics in CuxS nanocrystals. Phys. Rev. B 54, 8087–8094 (1996).

    Article  ADS  Google Scholar 

  44. Wise, F. W. Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 33, 773–780 (2000).

    Article  Google Scholar 

  45. Guerreiro, P. T. et al. PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:forsterite laser. Appl. Phys. Lett. 71, 1595–1597 (1997).

    Article  ADS  Google Scholar 

  46. Huang, X. D. et al. Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Appl. Phys. Lett. 78, 2825–2827 (2001).

    Article  ADS  Google Scholar 

  47. Rafailov, E. U. et al. High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser. Appl. Phys. Lett. 87, 081107 (2005).

    Article  ADS  Google Scholar 

  48. Mikhrin, S. S. et al. High power temperature-insensitive 1.3 μm InAs/InGaAs/GaAs quantum dot lasers. Semicond. Sci. Technol. 20, 340–342 (2005).

    Article  ADS  Google Scholar 

  49. Cataluna, M. A. et al. Stable mode-locked operation up to 80 °C from an InGaAs quantum-dot laser. IEEE Photon. Technol. Lett. 18, 1500–1502 (2006).

    Article  ADS  Google Scholar 

  50. Moore, S. A. et al. Reduced surface sidewall recombination and diffusion in quantum-dot lasers. IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).

    Article  ADS  Google Scholar 

  51. Ouyang, D. et al. High performance narrow stripe quantum-dot lasers with etched waveguide. Semicond. Sci. Technol. 18, L53–L54 (2003).

    Article  Google Scholar 

  52. Grundmann, M. et al. Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications. Jpn J. Appl. Phys. 39, 2341–2343 (2000).

    Article  ADS  Google Scholar 

  53. Cataluna, M. A. et al. Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser. Appl. Phys. Lett. 89, 81124 (2006).

    Article  Google Scholar 

  54. Kim, J., Choi, M. T., Lee, W. & Delfyett, P. J. in Proc. Soc. Photo-Opt. Instrum. Engineers, Kissimmee, Florida, USA, SPIE 6243, M2430 (2006).

    Google Scholar 

  55. Cataluna, M. A. et al. in Tech. Dig., Long Beach, USA, CLEO CThH3 (OSA, Washington DC, 2006).

    Google Scholar 

  56. Thompson, M. G. et al. 10 GHz hybrid modelocking of monolithic InGaAs quantum dot lasers. Electron. Lett. 39, 1121–1122 (2003).

    Article  Google Scholar 

  57. Thompson, M. G. et al. Transform-limited optical pulses from 18 GHz monolithic modelocked quantum dot lasers operating at 1.3 μm. Electron. Lett. 40, 346–347 (2004).

    Article  Google Scholar 

  58. Rafailov, E. U. et al. High-power ultrashort pulses output from a mode-locked two-section quantum-dot laser. Tech. Dig., San Francisco, USA, CLEO CPDB5 post-deadline, 1031–1032 (OSA, San Francisco, 2004).

    Google Scholar 

  59. Thompson, M. G. et al. Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers. Appl. Phys. Lett. 88, 133119 (2006).

    Article  ADS  Google Scholar 

  60. Renaudier, J. et al. 45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Perot semiconductor lasers at 1.5 μm. Electron. Lett. 41, 1007–1008 (2005).

    Article  Google Scholar 

  61. Gosset, C. et al. Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm. Appl. Phys. Lett. 88, 241105 (2006).

    Article  ADS  Google Scholar 

  62. Markus, A. et al. Simultaneous two-state lasing in quantum-dot lasers. Appl. Phys. Lett. 82, 1818–1820 (2003).

    Article  ADS  Google Scholar 

  63. Thompson, M. G. et al. Colliding-pulse modelocked quantum dot lasers. Electron. Lett. 41, 248–250 (2005).

    Article  Google Scholar 

  64. Rae, A. R. et al. in Tech. Dig., Montreal, Canada, LEOS, ThR5, 874–875 (IEEE, Mpntreal, 2006).

    Google Scholar 

  65. Cataluna, M. A. et al. in Tech. Dig., Montreal, Canada, LEOS, ThJ5, 798–799 (IEEE, Montreal, 2006).

    Google Scholar 

  66. Viktorov, E. A., Mandel, P., Vladimirov, A. G. & Bandelow, U. Model for mode locking in quantum dot lasers. Appl. Phys. Lett. 88, 201102 (2006).

    Article  ADS  Google Scholar 

  67. Cataluna, M. A. et al. Temperature dependence of pulse duration in a mode-locked quantum-dot laser. Appl. Phys. Lett. 90, 101102 (2007).

    Article  ADS  Google Scholar 

  68. Malins, D. B. et al. in Tech. Dig., Munich, Germany, CLEO-Europe'07 CF-6 (IEEE, Munich, 2007).

    Google Scholar 

  69. Shchekin, O. B. & Deppe, D. G. 1. 3 μm InAs quantum dot laser with To = 161 K from 0 to 80 °C. Appl. Phys. Lett. 80, 3277–3279 (2002).

    Article  ADS  Google Scholar 

  70. Zhukov, A. E. et al. Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates. Appl. Phys. Lett. 75, 1926–1928 (1999).

    Article  ADS  Google Scholar 

  71. Shchekin, O. B. & Deppe, D. G. Low-threshold high-To 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region. IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).

    Article  ADS  Google Scholar 

  72. Choi, M.-T., Kim, J.-M., Lee, W. & Delfyett, P. J. Ultralow noise optical pulse generation in an actively mode-locked quantum-dot semiconductor laser. Appl. Phys. Lett. 88, 131106 (2006).

    Article  ADS  Google Scholar 

  73. McRobbie, A. D., Cataluna, M. A., Livshits, D. A., Sibbett, W. & Rafailov, E. U. in Tech. Dig., Montreal, Canada, LEOS, ThJ4 796–797 (IEEE, Montreal, 2006).

    Google Scholar 

  74. Schneider, S. et al. Excited-state gain dynamics in InGaAs quantum-dot amplifiers. IEEE Photon. Technol. Lett. 17, 2014–2016 (2005).

    Article  ADS  Google Scholar 

  75. Rafailov, E. U. et al. Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses. Appl. Phys. Lett. 88, 041101 (2006).

    Article  ADS  Google Scholar 

  76. Cataluna, M. A. et al. in Tech. Dig., Sydney, Austrailia LEOS ThS2 870–871 (IEEE, Sydney, 2005).

    Google Scholar 

  77. Kim, J., Choi, M. -T. & Delfyett, P. J. Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser. Appl. Phys. Lett. 89, 261106 (2006).

    Article  ADS  Google Scholar 

  78. Berg, T. W. & Mork, J. Quantum dot amplifiers with high output power and low noise. Appl. Phys. Lett. 82, 3083–3085 (2003).

    Article  ADS  Google Scholar 

  79. Derickson, D. J. et al. Short pulse generation using multisegment mode-locked semiconductor-lasers. IEEE J. Quant. Electron. 28, 2186–2202 (1992).

    Article  ADS  Google Scholar 

  80. Zhang, L. et al. in Tech. Dig., Anaheim, USA, OFC OWM4 (IEEE, Anaheim, 2005).

    Google Scholar 

  81. Thompson, M. G. et al. in Tech. Dig., Anaheim, USA, OFC OThG3 (IEEE, Anaheim, 2006).

    Google Scholar 

  82. Derickson, D. J., Morton, P. A., Bowers, J. E. & Thornton, R. L. Comparison of timing jitter in external and monolithic cavity mode-locked semiconductor-lasers. Appl. Phys. Lett. 59, 3372–3374 (1991).

    Article  ADS  Google Scholar 

  83. Thompson, M. G. et al. in Tech. Dig., Cannes, France, ECOC We4.6.3 (IEEE, Cannes, 2006).

    Google Scholar 

  84. Guffarth, F. et al. Radiation hardness of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 82, 1941–1943 (2003).

    Article  ADS  Google Scholar 

  85. Marcinkevicius, S. et al. Changes in luminescence intensities and carrier dynamics induced by proton irradiation in InxGa1-xAs/GaAs quantum dots. Phys. Rev. B 66, 235314 (2002).

    Article  ADS  Google Scholar 

  86. Gubenko, A. et al. High-power monolithic passively modelocked quantum-dot laser. Electron. Lett. 41, 1124–1125 (2005).

    Article  Google Scholar 

  87. Fischer, P. et al. in Tech. Dig., Munich, Germany, CLEO-Europe'05 641–641 (IEEE, Munich, 2005).

    Google Scholar 

Download references

Acknowledgements

We wish to thank V. Ustinov and A. Zhukov from Ioffe Institute (St Petersburg) and D. Livshits and A. Kovsh from Innolume GmbH (Dortmund) for helping to prepare samples and stimulating discussions. The authors also acknowledge the support of the UK Engineering and Physical Sciences Research Council (EPSRC) and the partial financial support of FCT – Fundação para a Ciência e Tecnologia, Portugal, through a graduate scholarship awarded to M. A. Cataluna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. U. Rafailov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafailov, E., Cataluna, M. & Sibbett, W. Mode-locked quantum-dot lasers. Nature Photon 1, 395–401 (2007). https://doi.org/10.1038/nphoton.2007.120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing