Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bell's inequality violation with spins in silicon

Abstract

Bell's theorem proves the existence of entangled quantum states with no classical counterpart1. An experimental violation of Bell's inequality demands simultaneously high fidelities in the preparation, manipulation and measurement of multipartite quantum entangled states, and provides a single-number benchmark for the performance of devices that use such states for quantum computing2,3,4. We demonstrate a Bell/ Clauser–Horne–Shimony–Holt inequality5 violation with Bell signals up to 2.70(9), using the electron and the nuclear spins of a single phosphorus atom embedded in a silicon nanoelectronic device. Two-qubit state tomography reveals that our prepared states match the target maximally entangled Bell states with >96% fidelity. These experiments demonstrate complete control of the two-qubit Hilbert space of a phosphorus atom and highlight the important function of the nuclear qubit to expand the computational basis and maximize the readout fidelity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device operation and state preparation protocols.
Figure 2: Bell's inequality violation.
Figure 3: Density matrix tomography.

Similar content being viewed by others

References

  1. Bell, J. S. On the Einstein Podolski Rosen paradox. Physics 1, 195–200 (1964).

    Article  Google Scholar 

  2. Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001).

    Article  CAS  Google Scholar 

  3. Ansmann, M. et al. Violation of Bell's inequality in Josephson phase qubits. Nature 461, 504–506 (2009).

    Article  CAS  Google Scholar 

  4. Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nature Phys. 9, 29–33 (2012).

    Article  Google Scholar 

  5. Clauser, J., Horne, M., Shimony, A. & Holt, R. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  Google Scholar 

  6. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    Article  Google Scholar 

  7. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    Article  CAS  Google Scholar 

  8. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).

    Article  CAS  Google Scholar 

  9. Ghosh, S., Rosenbaum, T. F., Aeppli, G. & Coppersmith, S. N. Entangled quantum state of magnetic dipoles. Nature 425, 48–51 (2003).

    Article  CAS  Google Scholar 

  10. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    Article  CAS  Google Scholar 

  11. Simmons, S. et al. Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011).

    Article  CAS  Google Scholar 

  12. Brunner, R. et al. Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. Phys. Rev. Lett. 107, 146801 (2011).

    Article  CAS  Google Scholar 

  13. Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet–triplet qubits. Science 336, 202–205 (2012).

    Article  CAS  Google Scholar 

  14. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  CAS  Google Scholar 

  15. Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996).

    Article  CAS  Google Scholar 

  16. van Donkelaar, J. et al. Single atom devices by ion implantation. J. Phys. 27, 154204 (2015).

    Google Scholar 

  17. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nature Nanotech. 9, 986–991 (2014).

    Article  CAS  Google Scholar 

  18. Itoh, K. M. & Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).

    Article  CAS  Google Scholar 

  19. Laucht, A. et al. Electrically controlling single-spin qubits in a continuous microwave field. Sci. Adv. 1, e1500022 (2015).

    Article  Google Scholar 

  20. Dehollain, J. P. et al. Nanoscale broadband transmission lines for spin qubit control. Nanotechnology 24, 015202 (2013).

    Article  CAS  Google Scholar 

  21. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    Article  CAS  Google Scholar 

  22. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  23. Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    Article  CAS  Google Scholar 

  24. Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article  CAS  Google Scholar 

  25. Larsson, J.-Å. Loopholes in Bell inequality tests of local realism. J. Phys. A 47, 424003 (2014).

    Article  Google Scholar 

  26. Mehring, M., Mende, J. & Scherer, W. Entanglement between an electron and a nuclear spin 1/2. Phys. Rev. Lett. 90, 153001 (2003).

    Article  CAS  Google Scholar 

  27. Hill, S. & Wootters, W. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997).

    Article  CAS  Google Scholar 

  28. Morley, G. W. et al. The initialization and manipulation of quantum information stored in silicon by bismuth dopants. Nature Mater. 9, 725–729 (2010).

    Article  CAS  Google Scholar 

  29. Barrett, J., Cavalcanti, E. G., Lal, R. & Maroney, O. J. E. No Ψ-epistemic model can fully explain the indistinguishability of quantum states. Phys. Rev. Lett. 112, 250403 (2014).

    Article  Google Scholar 

  30. Kalra, R., Laucht, A., Hill, C. D. & Morello, A. Robust two-qubit gates for donors in silicon controlled by hyperfine interactions. Phys. Rev. X 4, 021044 (2014).

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project no. CE110001027) and the US Army Research Office (W911NF-13-1-0024). The authors acknowledge support from the Australian National Fabrication Facility. The work at Keio was supported in part by a Grant-in-Aid for Scientific Research by MEXT, in part by NanoQuine, in part by FIRST, and in part by a JSPS Core-to-Core Program.

Author information

Authors and Affiliations

Authors

Contributions

J.P.D. and S.S. contributed equally to this work, designing and carrying out the experiments, and analysing the data, with A.M.'s supervision. J.P.D., J.T.M., A.L. and A.M. designed and constructed the experimental set-up. R.K. and F.H. fabricated the device with A.S.D.'s supervision. K.M.I. supplied the 28Si wafers. D.N.J. and J.C.M. designed and carried out the 31P ion implantation with R.K.’s help. J.P.D., S.S. and A.M. wrote the manuscript with feedback from all authors.

Corresponding author

Correspondence to Andrea Morello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehollain, J., Simmons, S., Muhonen, J. et al. Bell's inequality violation with spins in silicon. Nature Nanotech 11, 242–246 (2016). https://doi.org/10.1038/nnano.2015.262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing