Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optimized quantum sensing with a single electron spin using real-time adaptive measurements

Abstract

Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz−1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experiment concept and apparatus.
Figure 2: High-dynamic-range adaptive magnetometry.
Figure 3: Frequency dependence of uncertainty.
Figure 4: Scaling of sensitivity as a function of total time.

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

    Article  CAS  Google Scholar 

  2. Higgins, B. L. et al. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).

    Article  CAS  Google Scholar 

  3. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  Google Scholar 

  4. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  5. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  CAS  Google Scholar 

  6. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–451 (2008).

    Article  CAS  Google Scholar 

  7. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  CAS  Google Scholar 

  8. Dolde, F. et al. Electric-field sensing using single diamond spins. Nature Phys. 7, 459–453 (2011).

    Article  CAS  Google Scholar 

  9. Acosta, V. M. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 070801 (2010).

    Article  CAS  Google Scholar 

  10. Toyli, D. M. et al. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8521 (2013).

    Article  CAS  Google Scholar 

  11. Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Bleszynski Jayich, A. C. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nature Commun. 5, 4429 (2014).

    Article  CAS  Google Scholar 

  12. Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496, 486–489 (2013).

    Article  CAS  Google Scholar 

  13. Kaufmann, S. et al. Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proc. Natl Acad. Sci. USA 110, 10894–10898 (2013).

    Article  CAS  Google Scholar 

  14. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  CAS  Google Scholar 

  15. Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).

    Article  CAS  Google Scholar 

  16. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2011).

    Article  Google Scholar 

  17. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  CAS  Google Scholar 

  18. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  CAS  Google Scholar 

  19. Tetienne, J.-P. et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366–1369 (2014).

    Article  CAS  Google Scholar 

  20. Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129–1132 (2015).

    Article  CAS  Google Scholar 

  21. Said, R. S., Berry, D. W. & Twamley, J. Nanoscale magnetometry using a single-spin system in diamond. Phys. Rev. B 83, 125410 (2011).

    Article  Google Scholar 

  22. Waldherr, G. et al. High-dynamic-range magnetometry with a single nuclear spin in diamond. Nature Nanotech. 7, 105–108 (2012).

    Article  CAS  Google Scholar 

  23. Nusran, N. M. et al. High-dynamic-range magnetometry with a single electronic spin in diamond. Nature Nanotech. 7, 109–112 (2012).

    Article  CAS  Google Scholar 

  24. Vijay, R. et al. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature 490, 77–80 (2012).

    Article  CAS  Google Scholar 

  25. Blok, M. S. et al. Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback. Nature Phys. 10, 189–193 (2014).

    Article  CAS  Google Scholar 

  26. Shulman, M. D. et al. Suppressing qubit dephasing using real-time Hamiltonian estimation. Nature Commun. 5, 5156 (2014).

    Article  CAS  Google Scholar 

  27. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  CAS  Google Scholar 

  28. Cappellaro, P. Spin-bath narrowing with adaptive parameter estimation. Phys. Rev. A 85, 030301 (2012).

    Article  Google Scholar 

  29. Higgins, B. L. et al. Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements. New J. Phys. 11, 073023 (2009).

    Article  Google Scholar 

  30. Hentschel, A. & Sanders, B. C. Machine learning for precise quantum measurement. Phys. Rev. Lett. 104, 063603 (2010).

    Article  Google Scholar 

  31. Hayes, J. F. A. & Berry, D. W. Swarm optimization for adaptive phase measurements with low visibility. Phys. Rev. A 89, 013838 (2014).

    Article  Google Scholar 

  32. Berry, D. W. & Wiseman, H. M. Optimal states and almost optimal adaptive measurements for quantum interferometry. Phys. Rev. Lett. 85, 5098–5101 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Tiggelman and R. Schouten for the development of the FPGA. The authors acknowledge support from the Dutch Organization for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), the DARPA QuASAR programme, the EU SOLID and DIAMANT programmes and the European Research Council through a starting grant. D.W.B. is funded by an Australian Research Council Future Fellowship (FT100100761).

Author information

Authors and Affiliations

Authors

Contributions

C.B., M.S.B. and R.H. conceived the experiments. C.B. and M.S.B. performed the measurements and numerical simulations and processed the data. H.T.D. and D.W.B. calculated the incremental phases for the optimized adaptive protocol and provided general theoretical support. M.L.M. and D.J.T. designed and carried out the synthesis of isotopically enriched diamond material. C.B., M.S.B. and R.H. wrote the manuscript. All authors analysed the results and commented on the manuscript.

Corresponding author

Correspondence to R. Hanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonato, C., Blok, M., Dinani, H. et al. Optimized quantum sensing with a single electron spin using real-time adaptive measurements. Nature Nanotech 11, 247–252 (2016). https://doi.org/10.1038/nnano.2015.261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing