Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Durable protein lattices of clathrin that can be functionalized with nanoparticles and active biomolecules

Abstract

Biological molecules that self-assemble and interact with other molecules are attractive building blocks for engineering biological devices. DNA has been widely used for the creation of nanomaterials1, but the use of proteins remains largely unexplored. Here, we show that clathrin can form homogeneous and extended two-dimensional lattices on a variety of substrates, including glass, metal, carbon and plastic. Clathrin is a three-legged protein complex with unique self-assembling properties and is relevant in the formation of membrane transport vesicles in eukaryotic cells2,3. We used a fragment of the adaptor protein epsin to immobilize clathrin lattices on the substrates. The lattices span multiple square millimetres with a regular periodicity of 30 nm and can be functionalized via modified subunits of clathrin with either inorganic nanoparticles or active enzymes. The lattices can be stored for months after crosslinking and stabilization with uranyl acetate. They could be dehydrated and rehydrated without loss of function, offering potential applications in sensing and as biosynthetic reactors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of clathrin lattices on different surfaces.
Figure 2: Regeneration of clathrin lattices.
Figure 3: Recovery of the epsin layer and of the complete lattice after dehydration.
Figure 4: Lattice functionalization with nanoparticles.
Figure 5: Lattice functionalization with enzymes.

Similar content being viewed by others

References

  1. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  Google Scholar 

  2. Brodsky, F. M. Diversity of clathrin function: new tricks for an old protein. Annu. Rev. Cell Dev. Biol. 28, 309–336 (2012).

    Article  CAS  Google Scholar 

  3. Pearse, B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl Acad. Sci. USA 73, 1255–1259 (1976).

    Article  CAS  Google Scholar 

  4. Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  Google Scholar 

  5. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  6. Selmi, D. N. et al. DNA-templated protein arrays for single-molecule imaging. Nano Lett. 11, 657–660 (2011).

    Article  CAS  Google Scholar 

  7. Steinhauer, C., Jungmann, R., Sobey, T. L., Simmel, F. C. & Tinnefeld, P. DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew. Chem. Int. Ed. 48, 8870–8873 (2009).

    Article  CAS  Google Scholar 

  8. Douglas, T. & Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    Article  CAS  Google Scholar 

  9. Graveland-Bikker, J. F., Schaap, I. A., Schmidt, C. F. & de Kruif, C. G. Structural and mechanical study of a self-assembling protein nanotube. Nano Lett. 6, 616–621 (2006).

    Article  CAS  Google Scholar 

  10. Sinclair, J. C., Davies, K. M., Venien-Bryan, C. & Noble, M. E. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nature Nanotech. 6, 558–562 (2011).

    Article  CAS  Google Scholar 

  11. Sleytr, U. B., Egelseer, E. M., Ilk, N., Pum, D. & Schuster, B. S-Layers as a basic building block in a molecular construction kit. FEBS J. 274, 323–334 (2007).

    Article  CAS  Google Scholar 

  12. Yang, R. et al. Self-assembly of ferritin nanocages into linear chains induced by poly(α, L-lysine). Chem. Commun. 50, 481–483 (2014).

    Article  CAS  Google Scholar 

  13. Ungewickell, E. & Branton, D. Assembly units of clathrin coats. Nature 289, 420–422 (1981).

    Article  CAS  Google Scholar 

  14. Dannhauser, P. N. & Ungewickell, E. J. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nature Cell Biol. 14, 634–639 (2012).

    Article  CAS  Google Scholar 

  15. Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol. 7, e1000191 (2009).

    Article  Google Scholar 

  16. Dannhauser, P. N. et al. Effect of clathrin light chains on the stiffness of clathrin lattices and membrane budding. Traffic 16, 519–533 (2015).

    Article  CAS  Google Scholar 

  17. Nandi, P. K. & Edelhoch, H. The effects of lyotropic (Hofmeister) salts on the stability of clathrin coat structure in coated vesicles and baskets. J. Biol. Chem. 259, 11290–11296 (1984).

    CAS  Google Scholar 

  18. Hoffmann, A. et al. A comparison of GFP-tagged clathrin light chains with fluorochromated light chains in vivo and in vitro. Traffic 11, 1129–1140 (2010).

    Article  CAS  Google Scholar 

  19. Wilbur, J. D. et al. Conformation switching of clathrin light chain regulates clathrin lattice assembly. Dev. Cell 18, 841–848 (2010).

    Article  CAS  Google Scholar 

  20. Hom, N. et al. Anisotropic nanocrystal arrays organized on protein lattices formed by recombinant clathrin fragments. J. Mater. Chem. 22, 23335–23339 (2012).

    Article  CAS  Google Scholar 

  21. Schoen, A. P., Schoen, D. T., Huggins, K. N., Arunagirinathan, M. A. & Heilshorn, S. C. Template engineering through epitope recognition: a modular, biomimetic strategy for inorganic nanomaterial synthesis. J. Am. Chem. Soc. 133, 18202–18207 (2011).

    Article  CAS  Google Scholar 

  22. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    Article  CAS  Google Scholar 

  23. Holstein, S. E., Ungewickell, H. & Ungewickell, E. Mechanism of clathrin basket dissociation: separate functions of protein domains of the DnaJ homologue auxilin. J. Cell Biol. 135, 925–937 (1996).

    Article  CAS  Google Scholar 

  24. Kalthoff, C., Alves, J., Urbanke, C., Knorr, R. & Ungewickell, E. J. Unusual structural organization of the endocytic proteins AP180 and epsin 1. J. Biol. Chem. 277, 8209–8216 (2002).

    Article  CAS  Google Scholar 

  25. Keen, J. H., Willingham, M. C. & Pastan, I. H. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 16, 303–312 (1979).

    Article  CAS  Google Scholar 

  26. Ungewickell, E. & Ungewickell, H. Bovine brain clathrin light chains impede heavy chain assembly in vitro. J. Biol. Chem. 266, 12710–12714 (1991).

    CAS  Google Scholar 

  27. Winkler, F. K. & Stanley, K. K. Clathrin heavy chain, light chain interactions. EMBO J. 2, 1393–1400 (1983).

    Article  CAS  Google Scholar 

  28. Hinrichsen, L., Meyerholz, A., Groos, S. & Ungewickell, E. J. Bending a membrane: how clathrin affects budding. Proc. Natl Acad. Sci. USA 103, 8715–8720 (2006).

    Article  CAS  Google Scholar 

  29. Burnham, N. A. et al. Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14, 1–6 (2003).

    Article  CAS  Google Scholar 

  30. Ortega-Esteban, A. et al. Minimizing tip–sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114, 56–61 (2012).

    Article  CAS  Google Scholar 

  31. Erhardt, J. & Dirr, H. Native dimer stabilizes the subunit tertiary structure of porcine class pi glutathione S-transferase. Eur. J. Biochem. 230, 614–620 (1995).

    Article  CAS  Google Scholar 

  32. Schlossman, D. M., Schmid, S. L., Braell, W. A. & Rothman, J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J. Cell Biol. 99, 723–733 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Ungewickell, G. Preiss and C. Lemke for expert technical assistance, the MHH core facility ‘Confocal Laser Microscopy’ for instrumental support and M. Breyvogel for the CAD model. The AFM instrumentation was funded through the ‘Cluster of Excellence and DFG Research Centre Nanoscale Microscopy and Molecular Physiology of the Brain’. M.P. thanks the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences (GGNB) for a scholarship. All authors are grateful for the support of E.J. Ungewickell regarding protein purification, ideas and discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.N.D. and H.B. prepared the samples. P.N.D. performed the electron and fluorescence microscopy experiments and analysed data. M.P. performed the AFM experiments and analysed data. P.N.D., M.P. and I.A.T.S. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to P. N. Dannhauser.

Ethics declarations

Competing interests

A patent application has been filed by P.N. Dannhauser and E.J. Ungewickell (EP2812029 A1) that includes aspects of the procedure used for the coating of surfaces. So far, the application has exclusively proved to be of scientific value, with no assignable monetary value.

Supplementary information

Supplementary information

Supplementary information (PDF 1113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dannhauser, P., Platen, M., Böning, H. et al. Durable protein lattices of clathrin that can be functionalized with nanoparticles and active biomolecules. Nature Nanotech 10, 954–957 (2015). https://doi.org/10.1038/nnano.2015.206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.206

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research