Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Catalysis by clusters with precise numbers of atoms

Abstract

Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition — such as the addition or removal of a single atom — can have a substantial influence on the activity and selectivity of a reaction. Here, we review recent progress in the synthesis and characterization of well-defined subnanometre clusters, and the understanding and exploitation of their catalytic properties. We examine work on size-selected supported clusters in ultrahigh-vacuum environments and under realistic reaction conditions, and explore the use of computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CO oxidation using Pd atoms and clusters supported on titania.
Figure 2: Techniques suitable for the characterization of small clusters.
Figure 3: CO oxidation using MgO-supported Au8 clusters in UHV.
Figure 4: The size-dependent activity and selectivity of Pd atoms and clusters on MgO in UHV.
Figure 5: Propylene oxidation using size-selected Ag3 clusters on amorphous alumina support.

Similar content being viewed by others

References

  1. Kappes, M. M., Kunz, R. W. & Schumacher, E. Production of large sodium clusters (Nax, x < 65) by seeded beam expansions. Chem. Phys. Lett. 91, 413–418 (1982).

    Article  CAS  Google Scholar 

  2. Ekardt, W. Dynamical polarizability of small metal particles - self-consistent spherical jellium background model. Phys. Rev. Lett. 52, 1925–1928 (1984).

    Article  CAS  Google Scholar 

  3. Knight, W. D. et al. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52, 2141–2143 (1984).

    Article  CAS  Google Scholar 

  4. Kappes, M. M., Radi, P., Schar, M. & Schumacher, E. Probes for electronic and geometrical shell structure effects in alkali-metal clusters. Photoionization measurements on KxLi, KxMg and KxZn (x < 25). Chem. Phys. Lett. 119, 11–16 (1985).

    Article  CAS  Google Scholar 

  5. Watanabe, H. I. & Inoshita, T. Superatom: A novel concept in materials science. Optoelectron. Dev. 1, 33–39 (1986).

    CAS  Google Scholar 

  6. Jena, P., Khanna, S. N. & Rao, B. K. in Theory of Atomic and Molecular Clusters 27–53 (Springer, 1999).

    Book  Google Scholar 

  7. Bergeron, D. E., Castleman, A. W., Morisato, T. & Khanna, S. N. Formation of Al13I: Evidence for the superhalogen character of Al13. Science 304, 84–87 (2004).

    Article  CAS  Google Scholar 

  8. Bohme, D. K. & Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: The ultimate single-site catalysts. Angew. Chem. Int. Ed. 44, 2336–2354 (2005).

    Article  CAS  Google Scholar 

  9. Ervin, K., Loh, S. K., Aristov, N. & Armentrout, P. B. Metal cluster ions—The bond-energy of Mn2+. J. Phys. Chem. 87, 3593–3596 (1983).

    Article  CAS  Google Scholar 

  10. Smolanoff, J., Lapicki, A. & Anderson, S. L. Use of a quadrupole mass filter for high-energy resolution ion-beam production. Rev. Sci. Instrum. 66, 3706–3708 (1995).

    Article  CAS  Google Scholar 

  11. Dietz, T. G., Duncan, M. A., Powers, D. E. & Smalley, R. E. Laser production of supersonic metal cluster beams. J. Chem. Phys. 74, 6511–6512 (1981).

    Article  CAS  Google Scholar 

  12. Fayet, P. & Woste, L. Production and study of metal cluster ions. Surf. Sci. 156, 134–139 (1985).

    Article  CAS  Google Scholar 

  13. Gantefor, G., Siekmann, H. R., Lutz, H. O. & Meiwes-Broer, K. H. Pure metal and metal-doped rare-gas clusters grown in a pulsed-arc cluster ion-source. Chem. Phys. Lett. 165, 293–296 (1990).

    Article  Google Scholar 

  14. Haberland, H. et al. Filling of micron-sized contact holes with copper by energetic cluster-impact. J. Vac. Sci. Technol. A 12, 2925–2930 (1994).

    Article  CAS  Google Scholar 

  15. Lang, S. M., Bernhardt, T. M., Barnett, R. N., Yoon, B. & Landman, U. Hydrogen-promoted oxygen activation by free gold cluster cations. J. Am. Chem. Soc. 131, 8939–8951 (2009).

    Article  CAS  Google Scholar 

  16. Schwarz, H. Chemistry with methane: concepts rather than recipes. Angew. Chem. Int. Ed. 50, 10096–10115 (2011).

    Article  CAS  Google Scholar 

  17. Dong, F. et al. Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene. J. Am. Chem. Soc. 130, 1932–1943 (2008).

    Article  CAS  Google Scholar 

  18. Schroder, D. & Schwarz, H. C–H and C–C bond activation by bare transition-metal oxide cations in the gas-phase. Angew. Chem. Int. Ed. 34, 1973–1995 (1995).

    Article  Google Scholar 

  19. Feyel, S., Schroder, D., Rozanska, X., Sauer, J. & Schwarz, H. Gas-phase oxidation of propane and 1-butene with V3O7+: Experiment and theory in concert. Angew. Chem. Int. Ed. 45, 4677–4681 (2006).

    Article  CAS  Google Scholar 

  20. Castleman, A. W. Cluster structure and reactions: Gaining insights into catalytic processes. Catal. Lett. 141, 1243–1253 (2011).

    Article  CAS  Google Scholar 

  21. Kaden, W. E., Wu, T., Kunkel, W. A. & Anderson, S. L., Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326, 826–829 (2009).

    Article  CAS  Google Scholar 

  22. Lim, D. C., Hwang, C. C., Gantefor, G. & Kim, Y. D. Model catalysts of supported Au nanoparticles and mass-selected clusters. Phys. Chem. Chem. Phys. 12, 15172–15180 (2010).

    Article  CAS  Google Scholar 

  23. Palmer, R. E., Pratontep, S. & Boyen, H. G. Nanostructured surfaces from size-selected clusters. Nature Mater. 2, 443–448 (2003).

    Article  CAS  Google Scholar 

  24. Bromann, K. et al. Controlled deposition of size-selected silver nanoclusters. Science 274, 956–958 (1996).

    Article  CAS  Google Scholar 

  25. Duffe, S. et al. Softlanding and STM imaging of Ag561 clusters on a C60 monolayer. Eur. Phys. J. D 45, 401–408 (2007).

    Article  CAS  Google Scholar 

  26. Pearmain, D. et al. Size and shape of industrial Pd catalyst particles using size-selected clusters as mass standards. Appl. Phys. Lett. 102, 163103 (2013).

    Article  CAS  Google Scholar 

  27. Popok, V. N., Barke, I., Campbell, E. E. B. & Meiwes-Broer, K.-H. Cluster-surface interaction: From soft landing to implantation. Surf. Sci. Rep. 66, 347–377 (2011).

    Article  CAS  Google Scholar 

  28. Lee, S. et al. Selective propene epoxidation on immobilized Au6–10 clusters: The effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 121, 1495–1499 (2009).

    Article  Google Scholar 

  29. Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

    Article  CAS  Google Scholar 

  30. Peters, S. et al. Inner-shell photoionization spectroscopy on deposited metal clusters using soft x-ray synchrotron radiation: An experimental setup. Rev. Sci. Instrum. 80, 125106 (2009).

    Article  CAS  Google Scholar 

  31. Abbet, S., Sanchez, A., Heiz, U. & Schneider, W. D. Tuning the selectivity of acetylene polymerization atom by atom. J. Catal. 198, 122–127 (2001).

    Article  CAS  Google Scholar 

  32. Lee, S. et al. Support-dependent performance of size-selected subnanometer cobalt cluster-based catalysts in the dehydrogenation of cyclohexene. ChemCatChem 4, 1632–1637 (2012).

    Article  CAS  Google Scholar 

  33. Heiz, U., Vanolli, F., Sanchez, A. & Schneider, W. D. Size-dependent molecular dissociation on mass-selected, supported metal clusters. J. Am. Chem. Soc. 120, 9668–9671 (1998).

    Article  CAS  Google Scholar 

  34. Cox, D. M. et al. Electronic structure of deposited monosized metal-clusters. Z. Phys. D Atom. Mol. Clusters. 20, 385–386 (1991).

    Article  CAS  Google Scholar 

  35. Anderson, S. L., Mizushima, T. & Udagawa, Y. Growth restructuring of Pd clusters induced by CO adsorption. J. Phys. Chem. 95, 6603–6610 (1991).

    Article  CAS  Google Scholar 

  36. Deng, W. et al. Cleavage of the C-O-C bond on size-selected subnanometer cobalt catalysts and on ALD-cobalt coated nanoporous membranes. Appl. Catal. A 393, 29–35 (2011).

    Article  CAS  Google Scholar 

  37. Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nature Mater. 8, 213–216 (2009).

    Article  CAS  Google Scholar 

  38. Kwon, G. et al. Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 7, 5808–5817 (2013).

    Article  CAS  Google Scholar 

  39. Lu, J. C. et al. Effect of the size-selective silver clusters on Li2O2 morphology in lithium-oxygen batteries. Nature Commun. 5, 4895 (2014).

    Article  CAS  Google Scholar 

  40. Haruta, M., Kobayashi, T., Sano, H. & Yamada, N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0° C. Chem. Lett. 16, 405–408 (1987).

    Article  Google Scholar 

  41. Choudhary, T. V., Sivadinarayana, C., Datye, A. K., Kumar, D. & Goodman, D. W. Acetylene hydrogenation on Au-based catalysts. Catal. Lett. 86, 1–8 (2003).

    Article  CAS  Google Scholar 

  42. Haruta, A. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 3, 75–87 (2003).

    Article  CAS  Google Scholar 

  43. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003).

    Article  CAS  Google Scholar 

  44. Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

    Article  CAS  Google Scholar 

  45. Thomas, J. M., Johnson, B. F. G., Raja, R., Sankar, G. & Midgley, P. A. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 36, 20–30 (2003).

    Article  CAS  Google Scholar 

  46. Raja, R. et al. Preparation and characterisation of a highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst. Chem. Commun. 1999, 1571–1572 (1999).

    Article  Google Scholar 

  47. Kimura, K. et al. Size determination of gold clusters by polyacrylamide gel electrophoresis in a large cluster region. J. Phys. Chem. C 113, 14076–14082 (2009).

    Article  CAS  Google Scholar 

  48. Knoppe, S., Boudon, J., Dolamic, I., Dass, A. & Burgi, T. Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal. Chem. 83, 5056–5061 (2011).

    Article  CAS  Google Scholar 

  49. Li, G. & Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 46, 1749–1758 (2013).

    Article  CAS  Google Scholar 

  50. Somorjai, G. A., Contreras, A. M., Montano, M. & Rioux, R. M. Clusters, surfaces, and catalysis. Proc. Natl Acad. Sci. USA 103, 10577–10583 (2006).

    Article  CAS  Google Scholar 

  51. Muetterties, E. L. Molecular metal clusters. Science 196, 839–848 (1977).

    Article  CAS  Google Scholar 

  52. Tao, F. et al. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327, 850–853 (2010).

    Article  CAS  Google Scholar 

  53. Wegner, K., Piseri, P., Tafreshi, H. V. & Milani, P. Cluster beam deposition: a tool for nanoscale science and technology. Phys. D: Appl. Phys. 39, R439–R459 (2006).

    Article  CAS  Google Scholar 

  54. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  55. Nonose, S., Sone, Y., Onodera, K., Sudo, S. & Kaya, K. Structure and reactivity of bimetallic ConVm clusters. J. Phys. Chem. 94, 2744–2746 (1990).

    Article  CAS  Google Scholar 

  56. Bouwen, W. et al. Production of bimetallic clusters by a dual-target dual-laser vaporization source. Rev. Sci. Instrum. 71, 54–58 (2000).

    Article  CAS  Google Scholar 

  57. Schmidt, M., Kusche, R., von Issendorff, B. & Haberland, H. Irregular variations in the melting point of size-selected atomic clusters. Nature 393, 238–240 (1998).

    Article  CAS  Google Scholar 

  58. Yasumatsu, H. Generation of intense and cold beam of Pt-Ag bi-element cluster ions having single-composition. Eur. Phys. J. D 63, 195–200 (2011).

    Article  CAS  Google Scholar 

  59. Yin, F., Wang, Z. W. & Palmer, R. E. Controlled formation of mass-selected Cu-Au core-shell cluster beams. J. Am. Chem. Soc. 133, 10325–10327 (2011).

    Article  CAS  Google Scholar 

  60. Pratontep, S., Carroll, S. J., Xirouchaki, C., Streun, M. & Palmer, R. E. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 76, 045103 (2005).

    Article  CAS  Google Scholar 

  61. Bansmann, J. et al. Temperature dependent magnetic spin and orbital moments of mass-filtered cobalt clusters on Au(111). Eur. Phys. J. D 45, 521–528 (2007).

    Article  CAS  Google Scholar 

  62. Rosellen, W., Bettermann, H., Veltum, T. & Getzlaff, M. Low energy impact of size selected FeCo nanoparticles with a W(110) surface. Physica E 44, 1683–1686 (2012).

    Article  CAS  Google Scholar 

  63. Li, A. et al. Using ambient ion beams to write nanostructured patterns for surface enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 53, 12528–12531 (2014).

    CAS  Google Scholar 

  64. Yamashita, M. & Fenn, J. B. Electrospray ion-source — another variation on the free-jet theme. J. Phys. Chem. 88, 4451–4459 (1984).

    Article  CAS  Google Scholar 

  65. Johnson, G. E., Priest, T. & Laskin, J. Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions. ACS Nano 6, 573–582 (2012).

    Article  CAS  Google Scholar 

  66. Schroder, D., Weiske, T. & Schwarz, H. Dissociation behavior of Cu(urea)+ complexes generated by electrospray ionization. Int. J. Mass Spectrom. 219, 729–738 (2002).

    Article  CAS  Google Scholar 

  67. Dietl, N. et al. Structure and chemistry of the heteronuclear oxo-cluster VPO4•+: A model system for the gas-phase oxidation of small hydrocarbons. J. Am. Chem. Soc. 135, 3711–3721 (2013).

    Article  CAS  Google Scholar 

  68. von Issendorff, B. & Palmer, R. E. A new high transmission infinite range mass selector for cluster and nanoparticle beams. Rev. Sci. Instrum. 70, 4497–4501 (1999).

    Article  CAS  Google Scholar 

  69. Miller, P. E. & Denton, M. B. The quadrupole mass filter — Basic operating concepts. J. Chem. Edu. 63, 617–622 (1986).

    Article  CAS  Google Scholar 

  70. Methling, R. P. et al. Magnetic studies on mass-selected iron particles. Eur. Phys. J. D 16, 173–176 (2001).

    Article  CAS  Google Scholar 

  71. de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1993).

    Article  CAS  Google Scholar 

  72. Yin, C. T., Tyo, E. C. & Vajda, S. in Heterogeneous Catalysis at the Nanoscale for Energy Applications (eds Tao, F., Schneider, W. F. & Kamat, P.) Ch. 3 (Wiley, 2014).

    Google Scholar 

  73. Hovel, H. et al. Controlled cluster condensation into preformed nanometer-sized pits. J. Appl. Phys. 81, 154–158 (1997).

    Article  Google Scholar 

  74. Dietsche, R. et al. Comparison of electronic structures of mass-selected Ag clusters and thermally grown Ag islands on sputter-damaged graphite surfaces. Appl. Phys. A 90, 395–398 (2008).

    Article  CAS  Google Scholar 

  75. Schouteden, K. et al. Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope. Nanoscale 6, 2170–2176 (2014).

    Article  CAS  Google Scholar 

  76. Bonanni, S., Ait-Mansour, K., Harbich, W. & Brune, H. Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters. J. Am. Chem. Soc. 134, 3445–3450 (2012).

    Article  CAS  Google Scholar 

  77. Carroll, S. J. et al. Pinning of size-selected Ag clusters on graphite surfaces. J. Chem. Phys. 113, 7723–7727 (2000).

    Article  CAS  Google Scholar 

  78. Yin, F., Lee, S., Abdela, A., Vajda, S. & Palmer, R. E. Communication: Suppression of sintering of size-selected Pd clusters under realistic reaction conditions for catalysis. J. Chem. Phys. 134, 141101–141104 (2011).

    Article  CAS  Google Scholar 

  79. Tong, X. et al. Intact size-selected Aun clusters on a TiO2(110)-(1 × 1) surface at room temperature. J. Am. Chem. Soc. 127, 13516–13518 (2005).

    Article  CAS  Google Scholar 

  80. Duffe, S. et al. Penetration of thin C60 films by metal nanoparticles. Nature Nanotech. 5, 335–339 (2010).

    Article  CAS  Google Scholar 

  81. Vandamme, N., Janssens, E., Vanhoutte, F., Lievens, P. & Van Haesendonck, C. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates. J. Phys. Condens. Matter 15, S2983–S2999 (2003).

    Article  CAS  Google Scholar 

  82. Popescu, R. et al. Coarsening of mass-selected Au clusters on amorphous carbon at room temperature. Surf. Sci. 603, 3119–3125 (2009).

    Article  CAS  Google Scholar 

  83. Uzun, A., Ortalan, V., Hao, Y. L., Browning, N. D. & Gates, B. C. Nanoclusters of gold on a high-area support: Almost uniform nanoclusters imaged by scanning transmission electron microscopy. ACS Nano 3, 3691–3695 (2009).

    Article  CAS  Google Scholar 

  84. Kunz, S. et al. Size-selected clusters as heterogeneous model catalysts under applied reaction conditions. Phys. Chem. Chem. Phys. 12, 10288–10291 (2010).

    Article  CAS  Google Scholar 

  85. Mao, B. H. et al. Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. J. Chem. Phys. 138, 214304 (2013).

    Article  CAS  Google Scholar 

  86. Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005).

    Article  CAS  Google Scholar 

  87. Gilb, S., Arenz, M. & Heiz, U. The polymerization of acetylene on supported metal clusters. Low Temp. Phys. 32, 1097–1103 (2006).

    Article  CAS  Google Scholar 

  88. Fan, C., Wu, T., Kaden, W. E. & Anderson, S. L. Cluster size effects on hydrazine decomposition on Irn/Al2O3/NiAl(110). Surf. Sci. 600, 461–467 (2006).

    Article  CAS  Google Scholar 

  89. Sanchez, A. et al. When gold is not noble: Nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999).

    Article  CAS  Google Scholar 

  90. Lim, D. C., Dietsche, R., Bubek, M., Gantefor, G. & Kim, Y. D. Oxidation and reduction of mass-selected au clusters on SiO2/Si. ChemPhysChem 7, 1909–1911 (2006).

    Article  CAS  Google Scholar 

  91. Lim, D. C. et al. Chemistry of mass-selected Au clusters deposited on sputter-damaged HOPG surfaces: The unique properties of Au8 clusters. Chem. Phys. Lett. 439, 364–368 (2007).

    Article  CAS  Google Scholar 

  92. Wu, T., Kaden, W. E., Kunkel, W. A. & Anderson, S. L. Size-dependent oxidation of Pdn (n ≤ 13) on alumina/NiAl(110): Correlation with Pd core level binding energies. Surf. Sci. 603, 2764–2770 (2009).

    Article  CAS  Google Scholar 

  93. Pacchioni, G. Nanocatalysis: Staying put. Nature Mater. 8, 167–168 (2009).

    Article  CAS  Google Scholar 

  94. Baldansuren, A., Dilger, H., Eichel, R.d.-A., van Bokhoven, J. A. & Roduner, E. Interaction and reaction of ethylene and oxygen on six-atom silver clusters supported on LTA zeolite. J. Phys. Chem. C 113, 19623–19632 (2009).

    Article  CAS  Google Scholar 

  95. Sungsik, L., Byeongdu, L., Seifert, S., Vajda, S. & Winans, R. E. Simultaneous measurement of X-ray small angle scattering, absorption and reactivity: A continuous flow catalysis reactor. Nucl. Instrum. Methods Phys. Res. Sect. A 649, 200–203 (2011).

    Article  CAS  Google Scholar 

  96. Nesselberger, M. et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nature Mater. 12, 919–924 (2013).

    Article  CAS  Google Scholar 

  97. Perez-Alonso, F. J. et al. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. Int. Ed. 51, 4641–4643 (2012).

    Article  CAS  Google Scholar 

  98. Hartl, K. et al. Electrochemically induced nanocluster migration. Electrochim. Acta 56, 810–816 (2010).

    Article  CAS  Google Scholar 

  99. Negreiros, F. R. et al. A first-principles theoretical approach to heterogeneous nanocatalysis. Nanoscale 4, 1208–1219 (2012).

    Article  CAS  Google Scholar 

  100. Kim, H. Y., Lee, H. M. & Metiu, H. Oxidative dehydrogenation of methanol to formaldehyde by a vanadium oxide cluster supported on rutile TiO2(110): Which oxygen is involved? J. Phys. Chem. C 114, 13736–13738 (2010).

    Article  CAS  Google Scholar 

  101. Huber, B., Koskinen, P., Hakkinen, H. & Moseler, M. Oxidation of magnesia-supported Pd-clusters leads to the ultimate limit of epitaxy with a catalytic function. Nature Mater. 5, 44–47 (2006).

    Article  CAS  Google Scholar 

  102. Remediakis, I. N., Lopez, N. & Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem. Int. Ed. 117, 1858–1860 (2005).

    Article  Google Scholar 

  103. Molina, L. M. & Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev Lett. 90, 206102 ( 2003).

  104. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx . Nature Chem. 3, 634–641 (2011).

    Article  CAS  Google Scholar 

  105. Joshi, A. M., Delgass, W. N. & Thomson, K. T. Mechanistic implications of Aun/Ti-lattice proximity for propylene epoxidation. J. Phys. Chem. C 111, 7841–7844 (2007).

    Article  CAS  Google Scholar 

  106. Tsunoyama, H., Negishi, Y. & Tsukuda, T. Chromatographic isolation of “missing” Au55 clusters protected by alkanethiolates. J. Am. Chem. Soc. 128, 6036–6037 (2006).

    Article  CAS  Google Scholar 

  107. Selva, J. et al. Silver sub-nanoclusters electrocatalyze ethanol oxidation and provide protection against ethanol toxicity in cultured mammalian cells. J. Am. Chem. Soc. 132, 6947–6954 (2010).

    Article  CAS  Google Scholar 

  108. Goellner, J. F., Guzman, J. & Gates, B. C. Synthesis and structure of tetrairidium clusters on TiO2 powder: Characterization by infrared and extended X-ray absorption fine structure spectroscopies. J. Phys. Chem. B 106, 1229–1238 (2002).

    Article  CAS  Google Scholar 

  109. Corma, A. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chem. 5, 775–781 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the US Department of Energy under Contract DE-AC02-06CH11357 from the Division of Materials Science and Engineering, Basic Energy Sciences, Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Vajda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyo, E., Vajda, S. Catalysis by clusters with precise numbers of atoms. Nature Nanotech 10, 577–588 (2015). https://doi.org/10.1038/nnano.2015.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing