Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures

Abstract

Recent developments in the technology of van der Waals heterostructures1,2 made from two-dimensional atomic crystals3,4 have already led to the observation of new physical phenomena, such as the metal–insulator transition5 and Coulomb drag6, and to the realization of functional devices, such as tunnel diodes7,8, tunnel transistors9,10 and photovoltaic sensors11. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack12, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers13,14,15,16,17. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of our device and its band structure.
Figure 2: The device characteristics at 2K.
Figure 3: Effect of an in-plane magnetic field on resonant tunnelling in the same device as in Fig. 2.
Figure 4: Radiofrequency oscillator based on a resonant tunnelling transistor, T = 300 K.

Similar content being viewed by others

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  2. Novoselov, K. S. Nobel lecture: graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  4. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  5. Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys. 7, 958–961 (2011).

    Article  CAS  Google Scholar 

  6. Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Phys. 8, 896–901 (2012).

    Article  CAS  Google Scholar 

  7. Lee, G. H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011).

    Article  Google Scholar 

  8. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  CAS  Google Scholar 

  9. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  CAS  Google Scholar 

  10. Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotech. 8, 100–103 (2013).

    Article  CAS  Google Scholar 

  11. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  12. Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nature Phys. 10, 451–456 (2014).

    Article  CAS  Google Scholar 

  13. Xue, J. M. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    Article  CAS  Google Scholar 

  14. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012).

    Article  CAS  Google Scholar 

  15. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  CAS  Google Scholar 

  16. Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  CAS  Google Scholar 

  17. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  CAS  Google Scholar 

  18. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012).

    Article  CAS  Google Scholar 

  19. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Mater. 11, 764–767 (2012).

    Article  CAS  Google Scholar 

  20. Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nature Commun. 4, 1794 (2013).

    Article  CAS  Google Scholar 

  21. Ponomarenko, L. A. et al. Field-effect control of tunneling barrier height by exploiting graphene's low density of states. J. Appl. Phys. 113, 136502 (2013).

    Article  Google Scholar 

  22. Feenstra, R. M., Jena, D. & Gu, G. Single-particle tunneling in doped graphene–insulator–graphene junctions. J. Appl. Phys. 111, 043711 (2012).

    Article  Google Scholar 

  23. de la Barrera, S. C., Gao, Q. & Feenstra, R. M. Theory of graphene–insulator–graphene tunnel junctions. J. Vac. Sci. Technol. B 32, 04E101 (2014).

    Article  Google Scholar 

  24. Wallbank, J. R. Electronic Properties of Graphene Heterostructures with Hexagonal Crystals (Springer, 2014).

    Book  Google Scholar 

  25. Brey, L. Coherent tunneling and negative differential conductivity in a graphene/h-BN/graphene heterostructure. Phys. Rev. Appl. 2, 014003 (2014).

    Article  Google Scholar 

  26. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  CAS  Google Scholar 

  27. Hayden, R. K. et al. Probing the hole dispersion curves of a quantum well using resonant magnetotunneling spectroscopy. Phys. Rev. Lett 66, 1749–1752 (1991).

    Article  CAS  Google Scholar 

  28. Falko, V. I. & Meshkov, S. V. On resonant oscillations in current–voltage characteristics of double-barrier heterostructures. Semicond. Sci. Technol. 6, 196–200 (1991).

    Article  Google Scholar 

  29. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  30. Sen, D., Novoselov, K. S., Reis, P. M. & Buehler, M. J. Tearing graphene sheets from adhesive substrates produces tapered nanoribbons. Small 6, 1108–1116 (2010).

    Article  CAS  Google Scholar 

  31. Neubeck, S. et al. Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging. Appl. Phys. Lett. 97, 053110 (2010).

    Article  Google Scholar 

  32. Eckmann, A. et al. Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013).

    Article  CAS  Google Scholar 

  33. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council, EC-FET European Graphene Flagship, Engineering and Physical Sciences Research Council (UK), the Leverhulme Trust (UK), the Royal Society, the US Office of Naval Research, US Air Force Office of Scientific Research, US Army Research Office and RS-RFBR, grant numbers 14-02-00792 and 13-02-92612 (Russian Federation). Y-J.K. was supported by the Global Research Lab Program (2011-0021972) through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future, Korea.

Author information

Authors and Affiliations

Authors

Contributions

J.S.T., Y.C. and Y-J.K. fabricated devices, A.M. carried out measurements and analysed the results, J.R.W., M.T.G., T.M.F., V.I.F and L.E. provided theoretical modelling and interpretation, K.W. and T.T. provided hBN crystals, S.L.W., F.W. and C.R.W. performed atomic force microscopy and Raman measurements, R.V.G., V.E.M., S.V.M., M.J.Z., E.E.V. and O.M. helped with experiments and/or writing the paper, A.M., K.S.N. and L.E. wrote the manuscript. Sections 1 and 2 of the Supplementary Information were written by J.R.W. and V.I.F. All authors contributed to discussions.

Corresponding author

Correspondence to K. S. Novoselov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 9928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishchenko, A., Tu, J., Cao, Y. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nature Nanotech 9, 808–813 (2014). https://doi.org/10.1038/nnano.2014.187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing