Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrasensitive photodetectors based on monolayer MoS2

Abstract

Two-dimensional materials are an emerging class of new materials with a wide range of electrical properties and potential practical applications. Although graphene1 is the most well-studied two-dimensional material, single layers of other materials, such as insulating BN (ref. 2) and semiconducting MoS2 (refs 3, 4) or WSe2 (refs 5, 6), are gaining increasing attention as promising gate insulators and channel materials for field-effect transistors. Because monolayer MoS2 is a direct-bandgap semiconductor7,8 due to quantum-mechanical confinement7,9,10, it could be suitable for applications in optoelectronic devices where the direct bandgap would allow a high absorption coefficient and efficient electron–hole pair generation under photoexcitation. Here, we demonstrate ultrasensitive monolayer MoS2 phototransistors with improved device mobility and ON current. Our devices show a maximum external photoresponsivity of 880 A W−1 at a wavelength of 561 nm and a photoresponse in the 400–680 nm range. With recent developments in large-scale production techniques such as liquid-scale exfoliation11,12,13 and chemical vapour deposition-like growth14,15, MoS2 shows important potential for applications in MoS2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monolayer MoS2 phototransistor layout.
Figure 2: Photoinduced response of the single-layer MoS2 photodetector.
Figure 3: Dependence of photoresponse on illumination intensity.
Figure 4: Photocurrent dynamics.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  4. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  5. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    Article  CAS  Google Scholar 

  6. Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013).

    Article  CAS  Google Scholar 

  7. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  8. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  9. Lebegue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009).

    Article  Google Scholar 

  10. Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 . Phys. Rev. B 83, 245213 (2011).

    Article  Google Scholar 

  11. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  Google Scholar 

  12. Smith, R. J. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).

    Article  CAS  Google Scholar 

  13. Lee, K. et al. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23, 4178–4182 (2011).

    Article  CAS  Google Scholar 

  14. Liu, K-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  CAS  Google Scholar 

  15. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  16. Brivio, J., Alexander, D. T. L. & Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 11, 5148–5153 (2011).

    Article  CAS  Google Scholar 

  17. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

    Article  CAS  Google Scholar 

  18. Kam, K. K. & Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86, 463–467 (1982).

    Article  CAS  Google Scholar 

  19. Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2 . ACS Nano 5, 9934–9938 (2011).

    Article  CAS  Google Scholar 

  20. Radisavljevic, B., Whitwick, M. B. & Kis, A. Small-signal amplifier based on single-layer MoS2 . Appl. Phys. Lett. 101, 043103 (2012).

    Article  Google Scholar 

  21. Lembke, D. & Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6, 10070–10075 (2012).

    Article  CAS  Google Scholar 

  22. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2011).

    Article  Google Scholar 

  23. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  CAS  Google Scholar 

  24. Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012).

    Article  CAS  Google Scholar 

  25. Choi, W. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832–5836 (2012).

    Article  CAS  Google Scholar 

  26. Xia, F., Mueller, T., Lin, Y-m., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  27. Frindt, R. F. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37, 1928–1929 (1966).

    Article  CAS  Google Scholar 

  28. Benameur, M. M. et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011).

    Article  CAS  Google Scholar 

  29. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    Article  CAS  Google Scholar 

  30. Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    Article  CAS  Google Scholar 

  31. Krainak, M. A., Sun, X., Yang, G. & Lu, W. Comparison of linear-mode avalanche photodiode lidar receivers for use at one-micron wavelength. Proc. SPIE 7681, 76810Y (2010).

    Article  Google Scholar 

  32. Ghatak, S., Pal, A. N. & Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5, 7707–7712 (2011).

    Article  CAS  Google Scholar 

  33. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

    Article  CAS  Google Scholar 

  34. Jeon, S. et al. Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nature Mater. 11, 301–305 (2012).

    Article  CAS  Google Scholar 

  35. Nagashio, K., Yamashita, T., Nishimura, T., Kita, K. & Toriumi, A. Electrical transport properties of graphene on SiO2 with specific surface structures. J. Appl. Phys. 110, 024513 (2011).

    Article  Google Scholar 

  36. Late, D. J., Liu, B., Matte, R. H. S. S., Dravid, V. P. & Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Radisavljevic for advice regarding device fabrication and A. Fontcuberta i Morral for the use of the monochromator. Device fabrication was carried out partly in the EPFL Center for Micro/Nanotechnology (CMI). Thanks go to Z. Benes (CMI) for technical support with electron-beam lithography. This work was financially supported by the Swiss Nanoscience Institute (NCCR Nanoscience) and the European Research Council (grant no. 240076; FLATRONICS: Electronic devices based on nanolayers; grant no. 259398; PorABEL: Nanopore integrated nanoelectrodes for biomolecular manipulation and sensing).

Author information

Authors and Affiliations

Authors

Contributions

O.L.S. and D.L. worked on device fabrication. O.L.S. performed the measurements and analysed the data. A.R. and M.K. built the optical setup. O.L.S., D.L., A.R. and A.K. designed the experiment. O.L.S., A.K. and A.R. wrote the manuscript.

Corresponding authors

Correspondence to Aleksandra Radenovic or Andras Kis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Sanchez, O., Lembke, D., Kayci, M. et al. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotech 8, 497–501 (2013). https://doi.org/10.1038/nnano.2013.100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing