Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of the spin-dependent Peltier effect

Abstract

The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material1. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics2 describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other3 has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range −0.9 to −1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of the spin-dependent Peltier effect.
Figure 2: Spin-dependent Peltier effect in an F/N/F spin-valve stack.
Figure 3: Device geometry.
Figure 4: Spin-dependent Peltier and spin-valve measurements.

Similar content being viewed by others

References

  1. MacDonald, D. K. C. Thermoelectricity, An Introduction to the Principles (Dover, 2006).

    Google Scholar 

  2. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  3. Gravier, L., Serrano-Guisan, S., Reuse, F. & Ansermet, J-Ph. Spin-dependent Peltier effect of perpendicular currents in multilayered nanowires. Phys. Rev. B 73, 052410 (2006).

    Article  Google Scholar 

  4. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  CAS  Google Scholar 

  5. Bauer, G. E. W., MacDonald, A. H. & Maekawa, S. Spin caloritronics. Solid State Commun. 150, 459–460 (2010).

    Article  CAS  Google Scholar 

  6. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  7. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).

    Article  CAS  Google Scholar 

  8. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    Article  CAS  Google Scholar 

  9. Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    Article  CAS  Google Scholar 

  10. Le Breton, J-C., Sharma, S., Saito, H., Yuasa, S. & Jansen, R. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunneling. Nature 475, 82–85 (2011).

    Article  CAS  Google Scholar 

  11. Hatami, M. & Bauer, G. E. W. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett. 99, 066603 (2007).

    Article  Google Scholar 

  12. Yu, H., Granville, S., Yu, D. P. & Ansermet, J-Ph. Evidence for thermal spin-transfer torque. Phys. Rev. Lett. 104, 146601 (2010).

    Article  Google Scholar 

  13. Heikkilä, T. T., Hatami, M. & Bauer, G. E. W. Spin heat accumulation and its relaxation in spin valves. Phys. Rev. B 81, 100408(R) (2010).

    Article  Google Scholar 

  14. Walter, M. et al. Seebeck effect in magnetic tunnel junctions. Nature Mater. 10, 742–746 (2011).

    Article  CAS  Google Scholar 

  15. Liebing, N. et al. Tunneling magnetothermopower in magnetic tunnel junction nanopillars. Phys. Rev. Lett. 107, 177201 (2011).

    Article  CAS  Google Scholar 

  16. Hatami, M., Bauer, G. E. W., Zhang, Q. & Kelly, P. J. Thermoelectric effects in magnetic nanostructures. Phys. Rev. B 79, 174426 (2009).

    Article  Google Scholar 

  17. Slachter, A., Bakker, F. L. & van Wees, B. J. Modeling of thermal spin transport and spin–orbit effects in ferromagnetic/nonmagnetic mesoscopic devices. Phys. Rev. B 84, 174408 (2011).

    Article  Google Scholar 

  18. Stiles, M. D. & Miltat, J. Spin Dynamics in Confined Magnetic Structures III, Topics in Applied Physics Vol. 101, 225–308 (Springer, 2006).

    Google Scholar 

  19. Bakker, F. L., Slachter, A., Adam, J-P. & van Wees, B. J. Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves. Phys. Rev. Lett. 105, 136601 (2010).

    Article  CAS  Google Scholar 

  20. Slachter, A., Bakker, F. L. & van Wees, B. J. Anomalous Nernst and anisotropic magnetoresistive heating in a lateral spin valve. Phys. Rev. B 84, 020412(R) (2011).

    Article  Google Scholar 

  21. Tulapurkar, A. A. & Suzuki, Y. Boltzmann approach to dissipation produced by a spin-polarized current. Phys. Rev. B 83, 012401 (2011).

    Article  Google Scholar 

  22. Dubois, S. et al. Evidence for a short spin diffusion length in permalloy from the giant magnetoresistance of multilayered nanowires. Phys. Rev. B 60, 477–484 (1999).

    Article  CAS  Google Scholar 

  23. Steenwyk, S. D., Hsu, S. Y., Loloee, R., Bass, J. & Pratt, W. P. Jr Perpendicular-current exchange-biased spin-valve evidence for a short spin-diffusion length in permalloy, J. Magn. Magn. Mater. 170, L1–L6 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Wolfs, M. de Roosz and J.G. Holstein for technical assistance and N. Vlietstra for initial pillar testing. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM) and is supported by NanoLab NL, EU FP7 ICT (grant no. 257159 MACALO) and the Zernike Institute for Advanced Materials.

Author information

Authors and Affiliations

Authors

Contributions

J.F., F.L.B., A.S. and B.J.v.W. conceived the experiments. J.F. and F.L.B. designed and carried out the main experiments. J.F., F.L.B. and F.K.D. took part in the fabrication process. J.F. and F.L.B. performed the analysis and wrote the paper, with the help of all authors.

Corresponding author

Correspondence to J. Flipse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 776 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flipse, J., Bakker, F., Slachter, A. et al. Direct observation of the spin-dependent Peltier effect. Nature Nanotech 7, 166–168 (2012). https://doi.org/10.1038/nnano.2012.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing