Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures

Abstract

Silicon nanowire and nanopore arrays promise to reduce manufacturing costs and increase the power conversion efficiency of photovoltaic devices. So far, however, photovoltaic cells based on nanostructured silicon exhibit lower power conversion efficiencies than conventional cells due to the enhanced photocarrier recombination associated with the nanostructures. Here, we identify and separately measure surface recombination and Auger recombination in wafer-based nanostructured silicon solar cells. By identifying the regimes of junction doping concentration in which each mechanism dominates, we were able to design and fabricate an independently confirmed 18.2%-efficient nanostructured ‘black-silicon’ cell that does not need the antireflection coating layer(s) normally required to reach a comparable performance level. Our results suggest design rules for efficient high-surface-area solar cells with nano- and microstructured semiconductor absorbers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology and reflectance of nanostructured silicon solar cells.
Figure 2: Effective carrier lifetime and effective surface recombination velocity of polished and nanostructured silicon from photoconductance decay.
Figure 3: Schematic of excess carrier recombination mechanisms in the silicon nanostructure.
Figure 4: IQE of nanostructured silicon solar cells.
Figure 5: JV curves of 18.2%-efficient nanostructured black silicon, polished silicon and pyramid-textured silicon with an SiNx antireflection coating under AM 1.5G illumination.

Similar content being viewed by others

References

  1. Stephens, R. B. & Cody, G. D. Optical reflectance and transmission of a textured surface. Thin Solid Films 45, 19–29 (1977).

    Article  CAS  Google Scholar 

  2. Koynov, S., Brandt, M. S. & Stutzmann, M. Black nonreflecting silicon surfaces for solar cells. Appl. Phys. Lett. 88, 203107 (2006).

    Article  Google Scholar 

  3. Branz, H. M. et al. Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl. Phys. Lett. 94, 231121 (2009).

    Article  Google Scholar 

  4. Garnett, E. & Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).

    Article  CAS  Google Scholar 

  5. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic application. Nature Mater. 9, 239–244 (2010).

    Article  CAS  Google Scholar 

  6. Han, S. E. & Chen, G. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10, 1012–1015 (2010).

    Article  CAS  Google Scholar 

  7. Branz, H. M. et al. Hot-wire chemical vapor deposition of epitaxial film crystal silicon for photovoltaics. Thin Solid Films 519, 4545–4550 (2011).

    Article  CAS  Google Scholar 

  8. Tian, B. Z. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–888 (2007).

    Article  CAS  Google Scholar 

  9. Weisse, J. M., Kim, D. R., Lee, C. H. & Zheng, X. L. Vertical transfer of uniform silicon nanowire arrays via crack formation. Nano Lett. 11, 1300–1305 (2011).

    Article  CAS  Google Scholar 

  10. Boettcher, S. W. et al. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 327, 185–187 (2010).

    Article  CAS  Google Scholar 

  11. Putnam, M. C. et al. Si microwire-array solar cells. Energy Environ. Sci. 3, 1037–1041 (2010).

    Article  Google Scholar 

  12. Garnett, E. C. & Yang, P. D. Silicon nanowire radial p–n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008).

    Article  CAS  Google Scholar 

  13. Yuan, H. C. et al. Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules. Appl. Phys. Lett. 95, 123501 (2009).

    Article  Google Scholar 

  14. Peng, K. Q. et al. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1, 1062–1067 (2005).

    Article  CAS  Google Scholar 

  15. Sai, H. et al. Wide-angle antireflection effect of subwavelength structures for solar cells. Jpn. J. Appl. Phys. 46, 3333–3336 (2007).

    Article  CAS  Google Scholar 

  16. Yoo, J., Yu, G. & Yi, J. Black surface structures for crystalline silicon solar cells. Mater. Sci. Eng. B 159–160, 333–337 (2009).

    Article  Google Scholar 

  17. Her, T. H. et al. Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 73, 1673–1675 (1998).

    Article  CAS  Google Scholar 

  18. Toor, F. et al. Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells. Appl. Phys. Lett. 99, 1030501 (2011).

    Article  Google Scholar 

  19. Garnett, E. C., Brongersma, M. L., Cui, Y. & McGehee, M. D. Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011).

    Article  CAS  Google Scholar 

  20. Kayes, B. M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J. Appl. Phys. 97, 114302–114311 (2005).

    Article  Google Scholar 

  21. Koren, E. et al. Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy. Appl. Phys. Lett. 95, 092105 (2009).

    Article  Google Scholar 

  22. Aberle, A. G. Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis (Centre for Photovoltaic Engineering, University of New South Wales, 1999).

    Google Scholar 

  23. Green, M. A. Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).

    Google Scholar 

  24. King, R. R., Sinton, R. A. & Swanson, R. M. Studies of diffused phosphorus emitters—saturation current, surface recombination velocity, and quantum efficiency. IEEE Trans. Electron. Dev. 37, 365–371 (1990).

    Article  CAS  Google Scholar 

  25. Cuevas, A., Basore, P. A., Giroult-Matlakowski, G. & Dubois, C. Surface recombination velocity of highly doped n-type silicon. J. Appl. Phys. 80, 3370–3375 (1996).

    Article  CAS  Google Scholar 

  26. Huang, Z. P. et al. Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285–308 (2011).

    Article  CAS  Google Scholar 

  27. Kao, D-B., McVittie, J. P., Nix, W. D. & Saraswat, K. C. Two-dimensional thermal oxidation of silicon-I. Experiments. IEEE Trans. Electron. Dev. 34, 1008–1017 (1987).

    Article  Google Scholar 

  28. Liu, H. I. et al. Self-limiting oxidation for fabricating sub-5 nm silicon nanowires. Appl. Phys. Lett. 64, 1383–1385 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. To of NREL for assistance with SEM. The authors are grateful to F. Toor and M.R. Page of NREL for many helpful discussions and T. Buonassissi of MIT for important insight into the role of Auger recombination. This work was supported by a DOE American Recovery and Reinvestment Act (ARRA) Photovoltaic Supply Chain and Crosscutting Technologies grant (contract no. DE-AC36-08GO28308).

Author information

Authors and Affiliations

Authors

Contributions

J.O. conceived and designed the study to answer the questions posed jointly by J.O., H-C.Y. and H.M.B. J.O. performed the experiments and analysed the data. J.O. and H.M.B. co-wrote the paper. All authors discussed the results and improved the manuscript.

Corresponding author

Correspondence to Jihun Oh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, J., Yuan, HC. & Branz, H. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotech 7, 743–748 (2012). https://doi.org/10.1038/nnano.2012.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing