Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanowire-based single-cell endoscopy

Abstract

One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution1,2,3,4,5,6 and high-throughput7,8 gene and drug delivery, biosensing6,9 and single-cell electrophysiology6,10. However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the nanowire-based optical probe for single-cell endoscopy.
Figure 2: Spatiotemporal delivery of QDs into a single living HeLa cell.
Figure 3: Subcellular imaging with nanowire endoscopes in a single living cell.
Figure 4: Local sensing of pH by the nanowire endoscope.
Figure 5: Near-field collection of QD fluorescence in a single living HeLa cell.

Similar content being viewed by others

References

  1. Chen, X., Kis, A., Zettl, A. & Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes. Proc. Natl Acad. Sci. USA 104, 8218–8222 (2007).

    Article  CAS  Google Scholar 

  2. Han, S. W. et al. A molecular delivery system by using AFM and nanoneedle. Biosens. Bioelectron. 20, 2120–2125 (2005).

    Article  CAS  Google Scholar 

  3. Han, S. W. et al. Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochem. Biophys. Res. Commun. 332, 633–639 (2005).

    Article  CAS  Google Scholar 

  4. Yum, K., Wang, N. & Yu, M. F. Electrochemically controlled deconjugation and delivery of single quantum dots into the nucleus of living cells. Small 6, 2109–2113 (2010).

    Article  CAS  Google Scholar 

  5. Yum, K. et al. Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano. Lett. 9, 2193–2198 (2009).

    Article  CAS  Google Scholar 

  6. Singhal, R. et al. Multifunctional carbon-nanotube cellular endoscopes. Nature Nanotech. 6, 57–64 (2011).

    Article  CAS  Google Scholar 

  7. Cai, D. et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nature Methods 2, 449–454 (2005).

    Article  CAS  Google Scholar 

  8. Shalek, A. K. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010).

    Article  CAS  Google Scholar 

  9. Niu, J. J., Schrlau, M. G., Friedman, G. & Gogotsi, Y. Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy. Small 7, 540–545 (2011).

    Article  CAS  Google Scholar 

  10. Schrlau, M. G., Dun, N. J. & Bau, H. H. Cell electrophysiology with carbon nanopipettes. ACS Nano 3, 563–568 (2009).

    Article  CAS  Google Scholar 

  11. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  Google Scholar 

  12. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  CAS  Google Scholar 

  13. Zhuang, X. Nano-imaging with STORM. Nature Photon. 3, 365–367 (2009).

    Article  CAS  Google Scholar 

  14. Tan, W. et al. Submicrometer intracellular chemical optical fiber sensors. Science 258, 778–781 (1992).

    Article  CAS  Google Scholar 

  15. Vo-Dinh, T., Alarie, J-P., Cullum, B. M. & Griffin, G. D. Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nature Biotechnol. 18, 764–767 (2000).

    Article  CAS  Google Scholar 

  16. Kasili, P. M., Song, J. M. & Vo-Dinh, T. Optical sensor for the detection of Caspase-9 activity in a single cell. J. Am. Chem. Soc. 126, 2799–2806 (2004).

    Article  CAS  Google Scholar 

  17. Vo-Dinh, T. & Kasili, P. Fiber-optic nanosensors for single-cell monitoring. Anal. Bioanal. Chem. 382, 918–925 (2005).

    Article  CAS  Google Scholar 

  18. Flusberg, B. A. et al. Fiber-optic fluorescence imaging. Nature Methods 2, 941–950 (2005).

    Article  CAS  Google Scholar 

  19. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  Google Scholar 

  20. Andrasfalvy, B. K., Zemelman, B. V., Tang, J. Y. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA 107, 11981–11986 (2010).

    Article  CAS  Google Scholar 

  21. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  Google Scholar 

  22. Bulina, M. E. et al. A genetically encoded photosensitizer. Nature Biotechnol. 24, 95–99 (2006).

    Article  CAS  Google Scholar 

  23. Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004).

    Article  CAS  Google Scholar 

  24. Sirbuly, D. J. et al. Optical routing and sensing with nanowire assemblies. Proc. Natl Acad. Sci. USA 102, 7800–7805 (2005).

    Article  CAS  Google Scholar 

  25. Kim, W. et al. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228–7229 (2007).

    Article  CAS  Google Scholar 

  26. Hallstrom, W. et al. Gallium phosphide nanowires as a substrate for cultured neurons. Nano. Lett. 7, 2960–2965 (2007).

    Article  Google Scholar 

  27. Shalek, A. K. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl Acad. Sci. USA 107, 1870–1875 (2010).

    Article  CAS  Google Scholar 

  28. Yum, K. et al. Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano. Lett. 9, 2193–2198 (2009).

    Article  CAS  Google Scholar 

  29. Conchello, J. A. & Lichtman, J. W. Optical sectioning microscopy. Nature Methods 2, 920–931 (2005).

    Article  CAS  Google Scholar 

  30. Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    Article  CAS  Google Scholar 

  31. Haber, L. H., Schaller, R. D., Johnson, J. C. & Saykally, R. J. Shape control of near-field probes using dynamic meniscus etching. J. Microsc. 214, 27–35 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (grant no. R21 EB007474-03) and Department of Energy (Contract no. DE-AC02-05CH11231). The authors thank Z. Huo for transmission electron microscope observations, D. Sirbuly for the nanowire endoscope bending video, H.E. Jeong, J.W. Lee and Q. Pan for cell culturing, and Q. Pan and S. Gweon for discussions. P.Y. thanks the National Science Foundation for the A. T. Waterman Award.

Author information

Authors and Affiliations

Authors

Contributions

R.Y., J.P., Y.C., L.P.L. and P.Y. conceived and designed the research. C.H., Y.C. and S.Y. prepared cell samples and performed the calcein live cell essay after cytotoxicity tests. R.Y., J.P. and Y.C. performed the experiments. R.X., J.P., Y.C., L.P.L. and P.Y. analysed the data. R.Y., J.P. and P.Y. wrote the manuscript.

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2688 kb)

Supplementary information

Supplementary movie 1 (AVI 2769 kb)

Supplementary information

Supplementary movie 2 (AVI 2722 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, R., Park, JH., Choi, Y. et al. Nanowire-based single-cell endoscopy. Nature Nanotech 7, 191–196 (2012). https://doi.org/10.1038/nnano.2011.226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing