Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-based programming of quantum dot valency, self-assembly and luminescence

Abstract

The electronic and optical properties of colloidal quantum dots, including the wavelengths of light that they can absorb and emit, depend on the size of the quantum dots. These properties have been exploited in a number of applications including optical detection1,2,3, solar energy harvesting4,5 and biological research6,7. Here, we report the self-assembly of quantum dot complexes using cadmium telluride nanocrystals capped with specific sequences of DNA. Quantum dots with between one and five DNA-based binding sites are synthesized and then used as building blocks to create a variety of rationally designed assemblies, including cross-shaped complexes containing three different types of dots. The structure of the complexes is confirmed with transmission electron microscopy, and photophysical studies are used to quantify energy transfer among the constituent components. Through changes in pH, the conformation of the complexes can also be reversibly switched, turning on and off the transfer of energy between the constituent quantum dots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic strategy for the development of quantum dots exhibiting strong luminescence, tunable emission spectrum, programmable valency and highly controllable binding energy.
Figure 2: Experimental results showing control over DNA-programmed quantum dots.
Figure 3: Representative high-resolution TEM images of DNA-programmed quantum dot complexes.
Figure 4: Optical characteristics of DNA-programmed quantum dot complexes.

Similar content being viewed by others

References

  1. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  Google Scholar 

  2. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotech. 4, 40–44 (2009).

    Article  CAS  Google Scholar 

  3. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nature Nanotech. 5, 391–400 (2010).

    Article  CAS  Google Scholar 

  4. Sargent, E. H. Infrared photovoltaics made by solution processing. Nature Photon. 3, 325–331 (2009).

    Article  CAS  Google Scholar 

  5. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod–polymer solar cells. Science 295, 2425–2427 (2002).

    Article  CAS  Google Scholar 

  6. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  7. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  8. Berti, L. & Burley, G. A. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nature Nanotech. 3, 81–87 (2008).

    Article  CAS  Google Scholar 

  9. Carter, J. D. & Labean, T. H. Organization of inorganic nanomaterials via programmable DNA self-assembly and peptide molecular recognition. ACS Nano 5, 2200–2205 (2011).

    Article  CAS  Google Scholar 

  10. Ma, N., Sargent, E. H. & Kelley, S. O. Biotemplated nanostructures: directed assembly of electronic and optical materials using nanoscale complementarity. J. Mater. Chem. 18, 954–965 (2008).

    Article  CAS  Google Scholar 

  11. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  12. Alivasatos, A. P. et al. Organization of ‘nanocrystal molecules' using DNA. Nature 382, 609–611 (1996).

    Article  Google Scholar 

  13. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 351, 553–556 (2008).

    Article  Google Scholar 

  14. Lee, J. H., Wong, N. Y., Tan, L. H., Wang, Z. & Lu, Y. Controlled alignment of multiple proteins and nanoparticles with nanometer resolution via backbone-modified phosphorothioate DNA and bifunctional linkers. J. Am. Chem. Soc. 132, 8906–8908 (2010).

    Article  CAS  Google Scholar 

  15. Mitchell, G. P., Mirkin, C. A. & Letsinger, R. L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 8122–8123 (1999).

    Article  CAS  Google Scholar 

  16. Ho, Y. P., Kung, M. C., Yang, S. & Wang, T-H. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett. 5, 1693–1697 (2005).

    Article  CAS  Google Scholar 

  17. Zanchet, D., Micheel, C. M., Parak, W. J., Gerion, D. & Alivisatos, A. P. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett. 1, 32–35 (2001).

    Article  CAS  Google Scholar 

  18. Suzuki, K., Hosokawa, K. & Maeda, M. Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces. J. Am. Chem. Soc. 131, 7518–7519 (2009).

    Article  CAS  Google Scholar 

  19. Zhao, W. T. & Hsing, I. M. Facile and rapid manipulation of DNA surface density on gold nanoparticles using mononucleotide-mediated conjugation. Chem. Commun. 46, 1314–1316 (2010).

    Article  CAS  Google Scholar 

  20. Ma, N., Yang, J., Stewart, K. M. & Kelley, S. O. DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles. Langmuir 23, 12783–12787 (2007).

    Article  CAS  Google Scholar 

  21. Ma, N., Sargent, E. H. & Kelley, S. O. One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. Nature Nanotech. 4, 121–125 (2009).

    Article  CAS  Google Scholar 

  22. Hinds, S. et al. Nucleotide-directed growth of semiconductor nanocrystals. J. Am. Chem. Soc. 128, 64–65 (2006).

    Article  CAS  Google Scholar 

  23. Pecoraro, V. L., Hermes, J. D. & Cleland, W. W. Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP. Biochemistry 23, 5262–5271 (1984).

    Article  CAS  Google Scholar 

  24. Borchert, H. et al, Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS. J. Phys. Chem. B 107, 9662–9668 (2003).

    Article  CAS  Google Scholar 

  25. Chang, T-W. F. et al. Efficient excitation transfer from polymer to nanocrystals. Appl. Phys. Lett. 84, 4295–4297 (2004).

    Article  CAS  Google Scholar 

  26. Burris, S. C., Zhou, Y., Maupin, W. A., Ebelhar, A. J. & Daugherty, M. W. The effect of surface preparation on apparent surface pKas of mercaptocarboxylic acid self-assembled monolayers on polycrystalline gold. J. Phys. Chem. C 112, 6811–6815 (2008).

    Article  CAS  Google Scholar 

  27. Fu, A. et al. Discrete nanostructures of quantum dots/Au with DNA, J. Am. Chem. Soc. 126, 10832–10833 (2004).

    Article  CAS  Google Scholar 

  28. Wilk, K. E. et al. Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63 Å resolution. Proc. Natl Acad. Sci. USA 96, 8901–8906 (1999).

    Article  CAS  Google Scholar 

  29. Wohri, A. B. et al Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction. Science 328, 630–633 (2010).

    Article  Google Scholar 

  30. Pascal, A. A. et al. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436, 134–137 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Institutes of Health (R21 to S.O.K.), the Ontario Research Fund (ORF-RE to S.O.K. and E.H.S.) and the Canada Research Chairs programme (E.H.S.).

Author information

Authors and Affiliations

Authors

Contributions

G.T. and S.O.K. designed the protocols for the synthesis of the nanoparticles and complexes. S.H., G.T. and E.H.S. designed and interpreted the energy transfer studies. G.T., P.E.L. and A.F. carried out materials analysis, and worked with E.H.S. and S.O.K. in their interpretation. E.H.S. and S.O.K. co-wrote the paper with contributions from G.T., S.H., A.F. and P.E.L.

Corresponding authors

Correspondence to Edward H. Sargent or Shana O. Kelley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikhomirov, G., Hoogland, S., Lee, P. et al. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nature Nanotech 6, 485–490 (2011). https://doi.org/10.1038/nnano.2011.100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing