Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Statistical analysis of nanoparticle dosing in a dynamic cellular system

Abstract

The delivery of nanoparticles into cells is important in therapeutic applications1,2,3 and in nanotoxicology4. Nanoparticles are generally targeted to receptors on the surfaces of cells and internalized into endosomes by endocytosis5,6,7,8,9, but the kinetics of the process and the way in which cell division redistributes the particles remain unclear. Here we show that the chance of success or failure of nanoparticle uptake and inheritance is random. Statistical analysis of nanoparticle-loaded endosomes indicates that particle capture is described by an over-dispersed Poisson probability distribution that is consistent with heterogeneous adsorption and internalization. Partitioning of nanoparticles in cell division is random and asymmetric, following a binomial distribution with mean probability of 0.52–0.72. These results show that cellular targeting of nanoparticles is inherently imprecise due to the randomness of nature at the molecular scale, and the statistical framework offers a way to predict nanoparticle dosage for therapy and for the study of nanotoxins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of nanoparticle delivery and loading into cells.
Figure 2: Optical tracking using photonic nanoparticles.
Figure 3: Nanoparticle delivery to cells.
Figure 4: Nanoparticle dose inheritance.

Similar content being viewed by others

References

  1. Scheinberg, D. A., Villa, C. H., Escorcia, F. E. & McDevitt, M. R. Conscripts of the infinite armada: systematic cancer therapy using nanomaterials. Nature Rev. Clin. Oncol. 7, 266–276 (2010).

    Article  CAS  Google Scholar 

  2. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nature Rev. Cancer 5, 161–171 (2005).

    Article  CAS  Google Scholar 

  3. Koo, O. M., Rubinstein, I & Onyuksel, H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 1, 193–212 (2005).

    Article  CAS  Google Scholar 

  4. Teeguarden, J. G., Hinderliter, P. M., Orr, G., Thrall B. D. & Pounds, J. G. Particokinetics in vitro; dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95, 300–312 (2007).

    Article  CAS  Google Scholar 

  5. Zhang, S., Li, J., Lykotrafitis, G., Bao, G. & Suresh, S. Size-dependent endocytosis of nanoparticles. Adv. Mat. 20, 1–6 (2008).

    Article  Google Scholar 

  6. Kim, J.-S. et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J. Vet. Sci. 7, 321–326 (2006).

    Article  Google Scholar 

  7. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).

    Article  CAS  Google Scholar 

  8. Osaki, F., Kanamori, T., Sando, S., Sera, T. & Aoyama, Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126, 6520–6521 (2004).

    Article  CAS  Google Scholar 

  9. Gratton, S. E. A. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    Article  CAS  Google Scholar 

  10. Rajendran, L., Knőlker, H.-J. & Simons, K. Subcellular targeting strategies for drug design and delivery. Nature Rev. Drug Discov. 9, 29–42 (2010).

    Article  CAS  Google Scholar 

  11. Feazell, R. P., Nakayama-Ratchford, N., Dai, H. & Lippard, S. J. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129, 8438–8439 (2007).

    Article  CAS  Google Scholar 

  12. Na, H. B. et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew. Chem. Int. Ed. 46, 5397–5401 (2007).

    Article  CAS  Google Scholar 

  13. Jaiswal, J. K., Mattoussi, H., Mauro, J. M. & Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol. 21, 47–51 (2003).

    Article  CAS  Google Scholar 

  14. Åkerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N. & Ruoslahtl, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002).

    Article  Google Scholar 

  15. Brown, M. S. & Goldstein, J. L. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc. Natl Acad. Sci. USA 76, 3330–3337 (1979).

    Article  CAS  Google Scholar 

  16. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  17. Decuzzi, P. & Ferrari, M. The receptor-mediated endocytosis of nonspherical particles. Biophys. J. 94, 3790–3797 (2008).

    Article  CAS  Google Scholar 

  18. Sun, Y. H. et al. Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells. Nanotechnology 17, 4469–4476 (2006).

    Article  Google Scholar 

  19. Errington, R. J. et al. Single cell nanoparticle tracking to model cell cycle dynamics and compartmental inheritance. Cell Cycle 9, 121–130 (2010).

    Article  CAS  Google Scholar 

  20. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article  CAS  Google Scholar 

  21. Bergeland, T., Widerberg, J., Bakke, O. & Nordeng, T. W. Mitotic partitioning of endosomes and lysosomes. Curr. Biol. 11, 644–651 (2001).

    Article  CAS  Google Scholar 

  22. Quenouille, M. H. A relation between the logarithmic, Poisson and negative bionomial series. Biometrics 5, 162–164 (1949).

    Article  CAS  Google Scholar 

  23. Kato, H. et al. Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment. Toxicol. in vitro 24, 1009–1018 (2010).

    Article  CAS  Google Scholar 

  24. Balaji, J. & Ryan, T. A. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl Acad. Sci. USA 104, 20576–20581 (2007).

    Article  CAS  Google Scholar 

  25. Rajan, S. S. & Vu, T. Q. Quantum dots monitor TrkA receptor dynamics in the interior of neural PC12 cells. Nano Lett. 6, 2049–2059 (2006).

    Article  CAS  Google Scholar 

  26. Lehnert, B. E. et al. Mechansims underlying the redistribution of particles among the lung's alveolar macrophages during alveolar phase clearance. Ann. Occup. Hyg. 38, 215–224 (1994).

    Google Scholar 

  27. Dunster, K., Toh, B. H. & Sentry, J. W. Early endosomes, late endosomes, and lysosomes display distinct partitioning strategies of inheritance with similarities to Golgi-derived membranes. Eur. J. Cell. Biol. 81, 117–124 (2002).

    Article  CAS  Google Scholar 

  28. Macara, I. G. & Mili, S. Polarity and differential inheritance—universal attributes of life? Cell 135, 801–812 (2008).

    Article  CAS  Google Scholar 

  29. Rujano, M. A. et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 4, 2325–2335 (2006).

    Article  CAS  Google Scholar 

  30. Singhvi, A. & Garriga, G. Asymmetric divisions, aggresomes and apoptosis. Trends Cell Biol. 19, 1–7 (2008).

    Article  Google Scholar 

  31. Jones, A. T. Gateways and tools for drug delivery: Endocytic pathways and the cellular dynamics of cell penetrating peptides. Int. J. Pharmacol. 354, 34–38 (2008).

    Article  CAS  Google Scholar 

  32. Nauman, D. A. & Bertozzi, C. R. Kinetic parameters for small-molecule drug delivery by covalent cell surface targeting. Biochim. Biophys. Acta 1568, 147–154 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Hondow and A. Brown for the electron micrograph of quantum dots and P. Williams for the DLS data. This work was supported by the Engineering and Physical Sciences Research Council, UK (grant no. EP/H008683/1, ‘Nanoparticle Cytometrics’) and the European Regional Development Funded Swansea Centre for Nanohealth.

Author information

Authors and Affiliations

Authors

Contributions

H.D.S., P.R., R.J.E. and P.J.S. designed the experiments. H.D.S., P.R. and M.R.B. analysed the data. H.D.S. and P.R. wrote the manuscript in close collaboration with the other authors. M.D.H and S.C. performed cell culture and nanoparticle loading. M.D.H. performed flow cytometry measurements. All authors discussed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Huw D. Summers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1529 kb)

Supplementary information

Supplementary movie (AVI 2709 kb)

Supplementary information

Supplementary information (PDF 314 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summers, H., Rees, P., Holton, M. et al. Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nature Nanotech 6, 170–174 (2011). https://doi.org/10.1038/nnano.2010.277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.277

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics