Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Training a molecular automaton to play a game

Abstract

Research at the interface between chemistry and cybernetics has led to reports of ‘programmable molecules’, but what does it mean to say ‘we programmed a set of solution-phase molecules to do X’? A survey of recently implemented solution-phase circuitry1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 indicates that this statement could be replaced with ‘we pre-mixed a set of molecules to do X and functional subsets of X’. These hard-wired mixtures are then exposed to a set of molecular inputs, which can be interpreted as being keyed to human moves in a game, or as assertions of logical propositions. In nucleic acids-based systems, stemming from DNA computation16,17,18,19,20, these inputs can be seen as generic oligonucleotides. Here, we report using reconfigurable21,22,23 nucleic acid catalyst-based units to build a multipurpose reprogrammable molecular automaton that goes beyond single-purpose ‘hard-wired’ molecular automata. The automaton covers all possible responses to two consecutive sets of four inputs (such as four first and four second moves for a generic set of trivial two-player two-move games). This is a model system for more general molecular field programmable gate array (FPGA)-like devices that can be programmed by example, which means that the operator need not have any knowledge of molecular computing methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic presentation of the game of tit-for-tat.
Figure 2: Basic molecular logic units and their activation during training and game play.
Figure 3: Demonstration of training and play-back.

Similar content being viewed by others

References

  1. de Silva, A. P. & McClenaghan, N. D. Proof-of-principle of molecular-scale arithmetic. J. Am. Chem. Soc. 122, 3965–3966 (2000).

    Article  CAS  Google Scholar 

  2. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E. & Shapiro, E. Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001).

    Article  CAS  Google Scholar 

  3. Stojanovic, M. N. & Stefanovic, D. A deoxyribozyme-based molecular automaton. Nature Biotechnol. 21, 1069–1074 (2003).

    Article  CAS  Google Scholar 

  4. Ashkenasy, G. & Ghadiri, M. R. Boolean logic functions of a synthetic peptide network. J. Am. Chem. Soc. 126, 11140–11141 (2004).

    Article  CAS  Google Scholar 

  5. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E. An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004).

    Article  CAS  Google Scholar 

  6. Macdonald, J. et al. Medium scale integration of molecular logic gates in an automaton. Nano Lett. 6, 2598–2603 (2006).

    Article  CAS  Google Scholar 

  7. Wu, G., Jonoska, N. & Seeman, N. C. Construction of a DNA nano-object directly demonstrates computation. Biosystems 98, 80–84 (2009).

    Article  CAS  Google Scholar 

  8. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article  CAS  Google Scholar 

  9. Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007).

    Article  CAS  Google Scholar 

  10. Margulies, D., Felder, C. E., Melman, G. & Shanzer, A. A molecular keypad lock: a photochemical device capable of authorizing password entries. J. Am. Chem. Soc. 129, 347–354 (2007).

    Article  CAS  Google Scholar 

  11. Ran, T., Kaplan, S. & Shapiro, E. Molecular implementation of simple logic programs. Nature Nanotech. 4, 642–648 (2009).

    Article  CAS  Google Scholar 

  12. Magri, D. C., Brown, G. J., McClean, G. D. & de Silva, A. P. Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a ‘lab-on-a-molecule’ prototype. J. Am. Chem. Soc. 128, 4950–4951 (2006).

    Article  CAS  Google Scholar 

  13. Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nature Nanotech. 4, 249–254 (2009).

    Article  CAS  Google Scholar 

  14. Shlyahovsky, B., Li, Y., Lioubashevski, O., Elbaz, J. & Willner, I. Logic gates and antisense DNA devices operating on a translator nucleic acid scaffold. ACS Nano 3, 1831–1843 (2009).

    Article  CAS  Google Scholar 

  15. Privman, V., Tam, T. K., Pita, M. & Katz, E. Switchable electrode controlled by enzyme logic network system: approaching physiologically regulated bioelectronics. J. Am. Chem. Soc. 131, 1314–1321 (2009).

    Article  CAS  Google Scholar 

  16. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  CAS  Google Scholar 

  17. Braich, R. S., Chelyapov, N., Johnson, C., Rothemund, P. W. & Adleman, L. Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296, 499–502 (2002).

    Article  CAS  Google Scholar 

  18. Ouyang, Q., Kaplan, P. D., Liu, S. & Libchaber, A. DNA solution of the maximal clique problem. Science 278, 446–449 (1997).

    Article  CAS  Google Scholar 

  19. Faulhammer, D., Cukras, A. R., Lipton, R. J. & Landweber, L. F. Molecular computation: RNA solutions to chess problems. Proc. Natl Acad. Sci. USA 94, 1385–1389 (2000).

    Article  Google Scholar 

  20. Liu, Q. et al. DNA computing on surfaces. Nature 403, 175–179 (2000).

    Article  CAS  Google Scholar 

  21. Alves, S. et al. Open-chain polyamine ligands bearing an anthracene unit—chemosensors for logic operations at the molecular level. Eur. J. Inorg. Chem. 405–412 (2001).

    Article  Google Scholar 

  22. Saghatelian, A., Volcker, N. H., Guchian, K. M., Lin, V. S. Y. & Ghadiri, M. R. DNA-based photonic logic gates: AND, NAND and INHIBIT. J. Am. Chem. Soc. 125, 346–347 (2003).

    Article  CAS  Google Scholar 

  23. de Silva, A. P., Dobbin, C. M., Vance, T. P. & Wannalerse, B. Multiply reconfigurable ‘plug and play’ molecular logic via self-assembly. Chem. Commun. 1386–1388 (2009).

  24. Stojanovic, M. N., Mitchell, T. E. & Stefanovic, D. Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124, 3555–3561 (2002).

    Article  CAS  Google Scholar 

  25. Breaker, R. R. & Joyce, G. F. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. Biol. 2, 655–660 (1995).

    Article  CAS  Google Scholar 

  26. Stojanovic, M. N. & Stefanovic, D. Deoxyribozyme-based half-adder. J. Am. Chem. Soc. 125, 6673–6676 (2003).

    Article  CAS  Google Scholar 

  27. Lederman, H., Macdonald, J., Stefanovic, D. & Stojanovic, M. N. Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45, 1194–1199 (2006).

    Article  CAS  Google Scholar 

  28. Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation. M.N.S. is a Lymphoma and Leukemia Society Fellow. The authors are grateful to P. Jelenkovic and N. Dabby for comments and advice.

Author information

Authors and Affiliations

Authors

Contributions

R.P. supervised and coordinated experimental efforts, optimized gates, performed the majority of experiments, analysed results and participated in writing the paper. E.M. participated in the initial ideation of the game, performed experiments and analysed results. M.L. performed experiments and analysed results. D.S. performed the game strategy analysis computationally, ran simulations and participated in writing the paper. M.N.S. initiated the project, proposed the game with E.M., and wrote the initial version of the paper.

Corresponding author

Correspondence to Milan N. Stojanovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10798 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, R., Matamoros, E., Liu, M. et al. Training a molecular automaton to play a game. Nature Nanotech 5, 773–777 (2010). https://doi.org/10.1038/nnano.2010.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.194

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research