Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements

Abstract

Silicon nanowires are expected to have applications in transistors, sensors, resonators, solar cells and thermoelectric systems1,2,3,4,5. Understanding the surface properties and dopant distribution will be critical for the fabrication of high-performance devices based on nanowires6. At present, determination of the dopant concentration depends on a combination of experimental measurements of the mobility and threshold voltage7,8 in a nanowire field-effect transistor, a calculated value for the capacitance, and two assumptions—that the dopant distribution is uniform and that the surface (interface) charge density is known. These assumptions can be tested in planar devices with the capacitance–voltage technique9. This technique has also been used to determine the mobility of nanowires10,11,12,13, but it has not been used to measure surface properties and dopant distributions, despite their influence on the electronic properties of nanowires14,15. Here, we measure the surface (interface) state density and the radial dopant profile of individual silicon nanowire field-effect transistors with the capacitance–voltage technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure.
Figure 2: Capacitance–voltage frequency-dependent measurements.
Figure 3: Radial dopant profile.
Figure 4: Capacitance–voltage simulations.

Similar content being viewed by others

References

  1. Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  2. Feng, X. L., He, R. R., Yang, P. D. & Roukes, M. L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007).

    Article  CAS  Google Scholar 

  3. Kayes, B. M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  Google Scholar 

  4. Garnett, E. C. & Yang, P. D. Silicon nanowire p–n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008).

    Article  CAS  Google Scholar 

  5. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–168 (2008).

    Article  CAS  Google Scholar 

  6. Law, M., Goldberger, J. & Yang, P. D. Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res. 34, 83–122 (2004).

    Article  CAS  Google Scholar 

  7. Goldberger, J., Hochbaum, A. I., Fan, R. & Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 6, 973–977 (2006).

    Article  CAS  Google Scholar 

  8. Cui, Y., Duan, X. F., Hu, J. T. & Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 5213–5216 (2000).

    Article  CAS  Google Scholar 

  9. Nicollian, E. H. & Brews, J. R. in MOS Physics and Technology 1–903 (Wiley-Interscience, 1982).

  10. Tu, R., Zhang, L., Nishi, Y. & Dai, H. J. Measuring the capacitance of individual semiconductor nanowires for carrier mobility assessment. Nano Lett. 7, 1561–1565 (2007).

    Article  CAS  Google Scholar 

  11. Gunawan, O. et al. Measurement of carrier mobility in silicon nanowires. Nano Lett. 8, 1566–1571 (2008).

    Article  Google Scholar 

  12. Khanal, D. R. & Wu, J. Gate coupling and charge distribution in nanowire field effect transistors. Nano Lett. 7, 2778–2783 (2007).

    Article  CAS  Google Scholar 

  13. Roddaro, S. et al. InAs nanowire metal-oxide semiconductor capacitors. Appl. Phys. Lett. 92, 253509–253511 (2008).

    Article  Google Scholar 

  14. Haick, H., Hurley, P. T., Hochbaum, A. I., Yang, P. D. & Lewis, N. S. Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. J. Am. Chem. Soc. 128, 8990–8991 (2006).

    Article  CAS  Google Scholar 

  15. Schmidt, V., Senz, S. & Gosele, U. Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires. Appl. Phys. A—Mater. Sci. Proc. 86, 187–191 (2007).

    Article  CAS  Google Scholar 

  16. He, R. R. et al. Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 17, 2098–2102 (2005).

    Article  CAS  Google Scholar 

  17. He, R. & Yang, P. Giant piezoresistance effect in silicon nanowires. Nature Nanotech. 1, 42–46 (2006).

    Article  CAS  Google Scholar 

  18. Zhang, R. Q. et al. Structures and energetics of hydrogen-terminated silicon nanowire surfaces. J. Chem. Phys. 123, 144703 (2005).

    Article  CAS  Google Scholar 

  19. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  20. Ilani, S., Donev, L. A. K., Kindermann, M. & McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nature Phys. 2, 687–691 (2006).

    Article  CAS  Google Scholar 

  21. Wilk, G. D., Wallace, R. M. & Anthony, J. M. High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001).

    Article  CAS  Google Scholar 

  22. Truong, L., Fedorenko, Y. G., Afanasev, V. V. & Stesmans, A. Admittance spectroscopy of traps at the interfaces of (100)Si with Al2O3, ZrO2 and HfO2 . Microelectron. Reliability 45, 823–826 (2005).

    Article  CAS  Google Scholar 

  23. Duenas, S. et al. Influence of single and double deposition temperatures on the interface quality of atomic layer deposited Al2O3 dielectric thin films on silicon. J. Appl. Phys. 99, 054902 (2006).

    Article  Google Scholar 

  24. Garnett, E. C., Liang, W. J. & Yang, P. D. Growth and electrical characteristics of platinum-nanoparticle-catalyzed silicon nanowires. Adv. Mater. 19, 2946–2950 (2007).

    Article  CAS  Google Scholar 

  25. Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004).

    Article  CAS  Google Scholar 

  26. Terman, L. M. An investigation of surface states at a silicon silicon oxide interface employing metal oxide silicon diodes. Solid-State Electron. 5, 285–299 (1962).

    Article  CAS  Google Scholar 

  27. Kennedy, D. P., Murley, P. C. & Kleinfel, W. On measurement of impurity atom distributions in silicon by differential capacitance technique. IBM J. Res. Dev. 12, 399–400 (1968).

    Article  Google Scholar 

  28. Kennedy, D. P. & Obrien, R. R. On measurement of impurity atom distributions by differential capacitance technique. IBM J. Res. Dev. 13, 212–213 (1969).

    Article  Google Scholar 

Download references

Acknowledgements

E.C.G. would like to thank the National Center for Electron Microscopy for use of their facilities, M. Fardy for help with FIB milling and Z. Zhang for help with imaging. Portions of this work were performed under the auspices of the National Science Foundation by University of California Berkeley under grant no. 0425914. The authors acknowledge the support of the MSD Focus Center, funded under the FCRP program of the Semiconductor Research Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Supplementary information

Supplementary Information

Supplementary Information (PDF 601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnett, E., Tseng, YC., Khanal, D. et al. Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nature Nanotech 4, 311–314 (2009). https://doi.org/10.1038/nnano.2009.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing