Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Principles and applications of nanofluidic transport

Abstract

The evolution from microfluidic to nanofluidic systems has been accompanied by the emergence of new fluid phenomena and the potential for new nanofluidic devices. This review provides an introduction to the theory of nanofluidic transport, focusing on the various forces that influence the movement of both solvents and solutes through nanochannels, and reviews the applications of nanofluidic devices in separation science and energy conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concentration and velocity profiles in a nanochannel.
Figure 2: Interaction potential between a particle and a surface (both negatively charged).
Figure 3: Concentration polarization.
Figure 4: Diffusion-limited patterning.
Figure 5: The nanofluidic transistor.
Figure 6: A biological porin engineered into a nanofluidic diode.

Similar content being viewed by others

References

  1. Turner, S. W., Perez, A. M., Lopez, A. & Craighead, H. G. Monolithic nanofluid sieving structures for DNA manipulation. J. Vac. Sci. Technol. B 16, 3835–3840 (1998).

    CAS  Google Scholar 

  2. Eijkel, J. C. T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid. 1, 249–267 (2005).

    CAS  Google Scholar 

  3. Abgrall, P. & Nguyen, N. T. Nanofluidic devices and their applications. Anal. Chem. 80, 2326–2341 (2008).

    CAS  Google Scholar 

  4. Mijatovic, D., Eijkel, J. C. T. & van den Berg, A. Technologies for nanofluidic systems: top-down vs. bottom-up — a review. Lab Chip 5, 492–500 (2005).

    CAS  Google Scholar 

  5. Perry, J. L. & Kandlikar, S. G. Review of fabrication of nanochannels for single phase liquid flow. Microfluid. Nanofluid. 2, 185–193 (2006).

    CAS  Google Scholar 

  6. Schoch, R. B., Han, J. Y. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).

    CAS  Google Scholar 

  7. Yuan, Z., Garcia, A. L., Lopez, G. P. & Petsev, D. N. Electrokinetic transport and separations in fluidic nanochannels. Electrophoresis 28, 595–610 (2007).

    CAS  Google Scholar 

  8. Succi, S., Mohammad, A. A. & Horbach, J. Lattice-Boltzmann simulation of dense nanoflows: A comparison with molecular dynamics and Navier-Stokes solutions. Int. J. Mod. Phys. C 18, 667–675 (2007).

    CAS  Google Scholar 

  9. Wijmans, J. G. & Baker, R. W. The solution-diffusion model — a review. J. Membr. Sci. 107, 1–21 (1995).

    CAS  Google Scholar 

  10. Gad-el-Hak, M. The fluid mechanics of microdevices — The Freeman scholar lecture. J. Fluid Eng.-T. ASME 121, 5–33 (1999).

    Google Scholar 

  11. Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AlChE J. 33, 1409–1425 (1987).

    CAS  Google Scholar 

  12. Prieve, D. C. & Hoysan, P. M. Role of colloidal forces in hydrodynamic chromatography. J. Colloid Interf. Sci. 64, 201–213 (1978).

    CAS  Google Scholar 

  13. Ruckenstein, E. & Prieve, D. C. Adsorption and desorption of particles and their chromatographic separation. AlChE J. 22, 276–283 (1976).

    CAS  Google Scholar 

  14. Bowen, W. R. & Mukhtar, H. Characterisation and prediction of separation performance of nanofiltration membranes. J. Membr. Sci. 112, 263–274 (1996).

    CAS  Google Scholar 

  15. Lyklema, J. Fundamentals of Interface and Colloid Science, Fundamentals 1st edn (Academic Press, 2000).

    Google Scholar 

  16. Christenson, H. K. & Claesson, P. M. Direct measurements of the force between hydrophobic surfaces in water. Ad. Colloid Interf. Sci. 91, 391–436 (2001).

    CAS  Google Scholar 

  17. Meyer, E. E., Rosenberg, K. J. & Israelachvili, J. Recent progress in understanding hydrophobic interactions. Proc. Natl Acad. Sci. USA 103, 15739–15746 (2006).

    CAS  Google Scholar 

  18. Norde, W. in Physical Chemistry of Biological Interfaces (ed. Dekker, M.) 115–136 (CRC, 2000).

    Google Scholar 

  19. Giddings, J. C., Kucera, E., Russell, C. P. & Myers, M. N. Statistical theory for equilibrium distribution of rigid molecules in inert porous networks. Exclusion chromatography. J. Phys. Chem. 72, 4397–4408 (1968).

    CAS  Google Scholar 

  20. Teraoka, I. Polymer solutions in confining geometries. Prog. Polym. Sci. 21, 89–149 (1996).

    CAS  Google Scholar 

  21. Burgreen, D. & Nakache, F. R. Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091 (1964).

    Google Scholar 

  22. Levine, S., Marriott, J. R., Neale, G. & Epstein, N. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J. Colloid Interf. Sci. 52, 136–149 (1975).

    Google Scholar 

  23. Vinogradova, O. I. Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56, 31–60 (1999).

    CAS  Google Scholar 

  24. Cottin-Bizonne, C., Cross, B., Steinberger, A. & Charlaix, E. Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artefacts. Phys. Rev. Lett. 94, 056102 (2005).

    CAS  Google Scholar 

  25. Muller, V. M., Sergeeva, I. P., Sobolev, V. D. & Churaev, N. V. Boundary effects in the theory of electrokinetic phenomena. Colloid J. USSR 48, 606–614 (1986).

    Google Scholar 

  26. Bouzigues, C. I., Tabeling, P. & Bocquet, L. Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys. Rev. Lett. 101, 114503 (2008).

    CAS  Google Scholar 

  27. Joly, L., Ybert, C., Trizac, E. & Bocquet, L. Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics. J. Chem. Phys. 125, 204716 (2006).

    Google Scholar 

  28. Vermesh, U. et al. Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors. Nano Lett. 9, 1315–1319 (2009).

    CAS  Google Scholar 

  29. Ren, Y. Q. & Stein, D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19, 195707 (2008).

    Google Scholar 

  30. van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C. & Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 7, 1022–1025 (2007).

    CAS  Google Scholar 

  31. Daiguji, H., Yang, P. D., Szeri, A. J. & Majumdar, A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 4, 2315–2321 (2004).

    CAS  Google Scholar 

  32. Stein, D., van der Heyden, F. H. J., Koopmans, W. J. A. & Dekker, C. Pressure-driven transport of confined DNA polymers in fluidic channels. Proc. Natl Acad. Sci USA 103, 15853–15858 (2006).

    CAS  Google Scholar 

  33. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  Google Scholar 

  34. Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005).

    CAS  Google Scholar 

  35. Eijkel, J. C. T., Bomer, J. G. & van den Berg, A. Osmosis and pervaporation in polyimide submicron microfluidic channel structures. Appl. Phys. Lett. 87, 114103 (2005).

    Google Scholar 

  36. Karlsson, R. et al. Moving-wall-driven flows in nanofluidic systems. Langmuir 18, 4186–4190 (2002).

    CAS  Google Scholar 

  37. Soare, M. A., Picu, R. C., Tichy, J., Lu, T. M. & Wang, G. C. Fluid transport through nanochannels using nanoelectromechanical actuators. J. Intell. Mater. Sys. Struct. 17, 231–238 (2006).

    Google Scholar 

  38. Tas, N. R., Berenschot, J. W., Lammerink, T. S. J., Elwenspoek, M. & van den Berg, A. Nanofluidic bubble pump using surface tension directed gas injection. Anal. Chem. 74, 2224–2227 (2002).

    CAS  Google Scholar 

  39. Prieve, D. C., Anderson, J. L., Ebel, J. P. & Lowell, M. E. Motion of a particle generated by chemical gradients. 2. Electrolytes. J. Fluid Mech. 148, 247–269 (1984).

    CAS  Google Scholar 

  40. Anderson, J. L., Prieve, D. C. & Ebel, J. P. Chemically induced migration of particles across fluid streamlines. Chem. Eng. Commun. 55, 211–224 (1987).

    CAS  Google Scholar 

  41. Keh, H. J. & Wei, Y. K. Diffusioosmosis and electroosmosis of electrolyte solutions in fibrous porous media. J. Colloid Interf. Sci. 252, 354–364 (2002).

    CAS  Google Scholar 

  42. Qian, S. Z., Das, B. & Luo, X. B. Diffusioosmotic flows in slit nanochannels. J. Colloid Interf. Sci. 315, 721–730 (2007).

    CAS  Google Scholar 

  43. Ajdari, A. & Bocquet, L. Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond. Phys. Rev. Lett. 96, 186102 (2006).

    Google Scholar 

  44. Goedecke, N., Eijkel, J. & Manz, A. Evaporation driven pumping for chromatography application. Lab Chip 2, 219–223 (2002).

    CAS  Google Scholar 

  45. Wheeler, T. D. & Stroock, A. D. The transpiration of water at negative pressures in a synthetic tree. Nature 455, 208–212 (2008).

    CAS  Google Scholar 

  46. Huh, D. et al. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nature Mater. 6, 424–428 (2007).

    CAS  Google Scholar 

  47. Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    CAS  Google Scholar 

  48. Poppe, H. Some reflections on speed and efficiency of modern chromatographic methods. J. Chromatogr. A 778, 3–21 (1997).

    CAS  Google Scholar 

  49. Kievsky, Y. Y. et al. Dynamics of molecular diffusion of rhodamine 6G in silica nanochannels. J. Chem. Phys. 128, 151102 (2008).

    CAS  Google Scholar 

  50. Durand, N. F. Y., Bertsch, A., Todorova, M. & Renaud, P. Direct measurement of effective diffusion coefficients in nanochannels using steady-state dispersion effects. Appl. Phys. Lett. 91, 203106 (2007).

    Google Scholar 

  51. Karnik, R., Castelino, K., Duan, C. H. & Majumdar, A. Diffusion-limited patterning of molecules in nanofluidic channels. Nano Lett. 6, 1735–1740 (2006).

    CAS  Google Scholar 

  52. Yamaguchi, A. et al. Diffusion of metal complexes inside of silica-surfactant nanochannels within a porous alumina membrane. J. Phys. Chem. B 112, 2024–2030 (2008).

    CAS  Google Scholar 

  53. Yamaguchi, A., Yoda, T., Suzuki, S., Morita, K. & Teramae, N. Diffusivities of tris(2,2′-bipyridyl)ruthenium inside silica-nanochannels modified with alkylsilanes. Anal. Sci. 22, 1501–1507 (2006).

    CAS  Google Scholar 

  54. Schoch, R. B., Bertsch, A. & Renaud, P. pH-controlled diffusion of proteins with different pl values across a nanochannel on a chip. Nano Lett. 6, 543–547 (2006).

    CAS  Google Scholar 

  55. Crank, J. The Mathematics of Diffusion (Oxford Univ. Press, 1975).

    Google Scholar 

  56. Delamarche, E., Bernard, A., Schmid, H., Michel, B. & Biebuyck, H. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276, 779–781 (1997).

    CAS  Google Scholar 

  57. Pennathur, S. & Santiago, J. G. Electrokinetic transport in nanochannels. 1. Theory. Anal. Chem. 77, 6772–6781 (2005).

    CAS  Google Scholar 

  58. Pennathur, S. & Santiago, J. G. Electrokinetic transport in nanochannels. 2. Experiments. Anal. Chem. 77, 6782–6789 (2005).

    CAS  Google Scholar 

  59. Pennathur, S. et al. Free-solution oligonucleotide separation in nanoscale channels. Anal. Chem. 79, 8316–8322 (2007).

    CAS  Google Scholar 

  60. Xuan, X. C. Ion separation in nanofluidics. Electrophoresis 29, 3737–3743 (2008).

    CAS  Google Scholar 

  61. Wang, X. Y., Kang, J. Z., Wang, S. L., Lu, J. J. & Liu, S. R. Chromatographic separations in a nanocapillary under pressure-driven conditions. J. Chromatogr. A 1200, 108–113 (2008).

    CAS  Google Scholar 

  62. Ogston, A. G. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54, 1754–1757 (1958).

    Google Scholar 

  63. Fu, J. P., Schoch, R. B., Stevens, A. L., Tannenbaum, S. R. & Han, J. Y. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nature Nanotech. 2, 121–128 (2007).

    CAS  Google Scholar 

  64. Blom, M. T., Chmela, E., Oosterbroek, R. E., Tijssen, R. & van den Berg, A. On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules. Anal. Chem. 75, 6761–6768 (2003).

    CAS  Google Scholar 

  65. Stein, D., van der Heyden, F. H. J., Koopmans, W. J. A. & Dekker, C. Pressure driven transport iof confined DNA polymers in fluidic channels. Proc. Natl Acad. Sci. USA 103, 15853–15858 (2006).

    CAS  Google Scholar 

  66. Han, J. & Craighead, H. G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    CAS  Google Scholar 

  67. Li, Z. R. et al. Continuum transport model of Ogston sieving in patterned nanofilter arrays for separation of rod-like biomolecules. Electrophoresis 29, 329–339 (2008).

    Google Scholar 

  68. Turner, S. W. P., Cabodi, M. & Craighead, H. G. Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Phys. Rev. Lett. 88, 128103 (2002).

    CAS  Google Scholar 

  69. Austin, R. Nanofluidics: A fork in the nano-road. Nature Nanotech. 2, 79–80 (2007).

    CAS  Google Scholar 

  70. Tegenfeldt, J. O. et al. Micro- and nanofluidics for DNA analysis. Anal. Bioanal. Chem. 378, 1678–1692 (2004).

    CAS  Google Scholar 

  71. Mannion, J. T., Reccius, C. H., Cross, J. D. & Craighead, H. G. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophys. J. 90, 4538–4545 (2006).

    CAS  Google Scholar 

  72. Cross, J. D., Strychalski, E. A. & Craighead, H. G. Size-dependent DNA mobility in nanochannels. J. Appl. Phys. 102, 024514 (2007).

    Google Scholar 

  73. Salieb-Beugelaar, G. B. et al. Field-dependent DNA mobility in 20 nm high nanoslits. Nano Lett. 8, 1785–1790 (2008).

    CAS  Google Scholar 

  74. Kuo, T. C., Sloan, L. A., Sweedler, J. V. & Bohn, P. W. Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow: Effect of surface charge density and Debye length. Langmuir 17, 6298–6303 (2001).

    CAS  Google Scholar 

  75. Karnik, R., Castelino, K. & Majumdar, A. Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett. 88, 123114 (2006).

    Google Scholar 

  76. Miedema, H. et al. A biological porin engineered into a molecular, nanofluidic diode. Nano Lett. 7, 2886–2891 (2007).

    CAS  Google Scholar 

  77. Garcia-Gimenez, E., Alcaraz, A., Aguilella, V. M. & Ramirez, P. Directional ion selectivity in a biological nanopore with bipolar structure. J. Membr. Sci. 331, 137–142 (2009).

    CAS  Google Scholar 

  78. Ali, M., Ramirez, P., Mafe, S., Neumann, R. & Ensinger, W. A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3, 603–608 (2009).

    CAS  Google Scholar 

  79. Karnik, R., Duan, C. H., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).

    CAS  Google Scholar 

  80. Alcaraz, A. et al. A pH-tunable nanofluidic diode: Electrochemical rectification in a reconstituted single ion channel. J. Phys. Chem. B 110, 21205–21209 (2006).

    CAS  Google Scholar 

  81. Cheng, L. J. & Guo, L. J. Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett. 7, 3165–3171 (2007).

    CAS  Google Scholar 

  82. Fan, R., Huh, S., Yan, R., Arnold, J. & Yang, P. D. Gated proton transport in aligned mesoporous silica films. Nature Mater. 7, 303–307 (2008).

    CAS  Google Scholar 

  83. Fan, R., Yue, M., Karnik, R., Majumdar, A. & Yang, P. D. Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys. Rev. Lett. 95, 086607 (2005).

    Google Scholar 

  84. Karnik, R. et al. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5, 943–948 (2005).

    CAS  Google Scholar 

  85. Kuo, T. C. et al. Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal. Chem. 75, 1861–1867 (2003).

    CAS  Google Scholar 

  86. Vlassiouk, I. & Siwy, Z. S. Nanofluidic diode. Nano Lett. 7, 552–556 (2007).

    CAS  Google Scholar 

  87. Gijs, M. A. M. Device physics: Will fluidic electronics take off? Nature Nanotech. 2, 268–270 (2007).

    CAS  Google Scholar 

  88. Pu, Q. S., Yun, J. S., Temkin, H. & Liu, S. R. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4, 1099–1103 (2004).

    CAS  Google Scholar 

  89. Wang, Y. C., Stevens, A. L. & Han, J. Y. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299 (2005).

    CAS  Google Scholar 

  90. Mani, A., Zangle, T. A. & Santiago, J. G. On the propagation of concentration polarization from microchannel-nanochannel interfaces part I: Analytical model and characteristic analysis. Langmuir 25, 3898–3908 (2009).

    CAS  Google Scholar 

  91. Zangle, T. A., Mani, A. & Santiago, J. G. On the propagation of concentration polarization from microchannel-nanochannel interfaces part II: Numerical and experimental study. Langmuir 25, 3909–3916 (2009).

    CAS  Google Scholar 

  92. Plecis, A., Nanteuil, C., Haghiri-Gosnet, A. M. & Chen, Y. Electropreconcentration with charge-selective nanochannels. Anal. Chem. 80, 9542–9550 (2008).

    CAS  Google Scholar 

  93. Han, A. P., de Rooij, N. F. & Staufer, U. Design and fabrication of nanofluidic devices by surface micromachining. Nanotechnology 17, 2498–2503 (2006).

    CAS  Google Scholar 

  94. Han, J. Y., Fu, J. P. & Schoch, R. B. Molecular sieving using nanofilters: Past, present and future. Lab Chip 8, 23–33 (2008).

    CAS  Google Scholar 

  95. Eijkel, J. C. T. Scaling revisited. Lab Chip 7, 1630–1632 (2007).

    CAS  Google Scholar 

  96. Osterle, J. F. Unified treatment of thermodynamics of steady-state energy conversion. Appl. Sci. Res. A 12, 425–434 (1964).

    Google Scholar 

  97. Burgreen, D. & Nakache, F. R. Efficiency of pumping and power generation in ultrafine electrokinetic systems J. Appl. Mech. 32, 675–679 (1965).

    Google Scholar 

  98. Davidson, C. & Xuan, X. C. Electrokinetic energy conversion in slip nanochannels. J. Power Sources 179, 297–300 (2008).

    CAS  Google Scholar 

  99. Davidson, C. & Xuan, X. C. Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels. Electrophoresis 29, 1125–1130 (2008).

    CAS  Google Scholar 

  100. Pennathur, S., Eijkel, J. C. T. & van den Berg, A. Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab Chip 7, 1234–1237 (2007).

    Google Scholar 

  101. Probstein, R. F. Physicochemical Hydrodynamics: An Introduction 2nd edn (Wiley, 1994).

    Google Scholar 

  102. van Oss, C. J. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J. Mol. Recogn. 16, 177–190 (2003).

    CAS  Google Scholar 

  103. Ninham, B. W. & Yaminsky, V. Ion binding and ion specificity: The Hofmeister effect and Onsager and Lifshitz theories. Langmuir 13, 2097–2108 (1997).

    CAS  Google Scholar 

  104. Pierret, R. F. Semiconductor Device Fundamentals (Addison-Wesley, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank the Dutch Technology Foundation (STW) for financial support via a NanoNed grant (TMM 7128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Sparreboom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparreboom, W., van den Berg, A. & Eijkel, J. Principles and applications of nanofluidic transport. Nature Nanotech 4, 713–720 (2009). https://doi.org/10.1038/nnano.2009.332

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing