Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable optical forces between nanophotonic waveguides

Abstract

The confinement of light in components with nanoscale cross-sections in nanophotonic circuits significantly enhances the magnitude of the optical forces experienced by these components1,2. Here we demonstrate optical gradient forces between two nanophotonic waveguides, and show that the sign of the force can be tuned from attractive to repulsive by controlling the relative phase of the optical fields injected into the waveguides. The optical gradient force could have applications in optically tunable microphotonic devices and nanomechanical systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Mach–Zehnder interferometer.
Figure 2: Force (calculated) versus distance for different relative mode excitations.
Figure 3: Calibration, transmission and transduction.
Figure 4: The experimental setup.
Figure 5: Determining the optical force.

Similar content being viewed by others

References

  1. Rakich, P. T., Popović, M. A., Soljačić, R. & Ippen, E. P. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials. Nature Photon. 1, 658–665 (2007).

    Article  CAS  Google Scholar 

  2. Eichenfield, M., Michael, C. P., Perahia, R. & Painter. O. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photon. 1, 416–421 (2007).

    Article  CAS  Google Scholar 

  3. Kippenberg, T., Rokhsari, H., Carmon, T. Scherer, H. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical micro-cavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  CAS  Google Scholar 

  4. Arcizet, A., Cohadon, P. F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  CAS  Google Scholar 

  5. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  CAS  Google Scholar 

  6. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  CAS  Google Scholar 

  7. Chu, S. Laser manipulation of atoms and particles. Science 253, 861–866 (1991).

    Article  CAS  Google Scholar 

  8. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008).

    Article  CAS  Google Scholar 

  9. Povinelli, M. l. et al. Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005).

    Article  Google Scholar 

  10. Bogaerts, W. et al. Silicon-on-insulator spectral filters fabricated with CMOS technology. J. Sel. Top. Quant. Electron. (submitted).

  11. Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  12. Bienstman, P. & Baets, R. Advanced boundary conditions for eigenmode expansion models. Opt. Quant. Electron. 34, 523–540 (2002).

    Google Scholar 

  13. Taillaert, D., Bienstman, P. & Baets, R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Opt. Lett. 29, 2749–2751 (2004).

    Article  Google Scholar 

  14. Bogaerts, W. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401–412 (2005).

    Article  CAS  Google Scholar 

  15. De Vlaminck, I. et al. Detection of nanomechanical motion by evanescent light wave coupling. Appl. Phys. Lett. 90, 233116 (2007).

    Article  Google Scholar 

  16. Sader, J. E., Larson, I., Mulvaney, P. & White, L. R. Method for the calibration of atomic-force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995).

    Article  CAS  Google Scholar 

  17. Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Research Foundation—Flanders (FWO) for financial support. We also thank L. Haentjes for help with the construction of the vacuum chamber, M. Verbist for taking the SEM image, W. Bogaerts for help with the design of the waveguides and S. Verstuyft for help with processing.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and I.D.V. conceived and designed the experiments. J.R. performed the experiments, analysed the data and wrote the paper. J.R. and B.M. performed numerical simulations. L.L., D.V.T. and R.B. contributed materials and analysis tools. All authors discussed the results and provided feedback and comments on the manuscript.

Corresponding author

Correspondence to Joris Roels.

Supplementary information

Supplementary information

Supplementary information (PDF 322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roels, J., De Vlaminck, I., Lagae, L. et al. Tunable optical forces between nanophotonic waveguides. Nature Nanotech 4, 510–513 (2009). https://doi.org/10.1038/nnano.2009.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing