Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors

Abstract

Membrane proteins are central to many biological processes, and the interactions between transmembrane protein receptors and their ligands are of fundamental importance in medical research. However, measuring and characterizing these interactions is challenging. Here we report that sensors based on arrays of resonating microcantilevers can measure such interactions under physiological conditions. A protein receptor—the FhuA receptor of Escherichia coli—is crystallized in liposomes, and the proteoliposomes then immobilized on the chemically activated gold-coated surface of the sensor by ink-jet spotting in a humid environment, thus keeping the receptors functional. Quantitative mass-binding measurements of the bacterial virus T5 at subpicomolar concentrations are performed. These experiments demonstrate the potential of resonating microcantilevers for the specific, label-free and time-resolved detection of membrane protein–ligand interactions in a micro-array format.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation of FhuA receptors for cantilever functionalization.
Figure 2: Humidity chamber for functionalization of cantilevers with membrane proteins.
Figure 3: Functionalization of the upper cantilever surface with FhuA–proteoliposomes.
Figure 4: Schematic of the dynamic-mode measurement setup.
Figure 5: Docking of T5 phages to FhuA-functionalized cantilevers.

Similar content being viewed by others

References

  1. Howard, A. D. et al. Orphan G-protein-coupled receptors and natural ligand discovery. Trends Pharmacol. Sci. 22, 132–140 (2001).

    Article  Google Scholar 

  2. Cooper, M. Advances in membrane receptor screening and analysis. J. Mol. Recogn. 17, 286–315 (2004).

    Article  Google Scholar 

  3. Hall, D. A., Ptacek, J. & Snyder, M. Protein microarray technology. Mech. Ageing Dev. 128, 161–167 (2007).

    Article  Google Scholar 

  4. Hansen, K. M. & Thundat, T. Microcantilever biosensors. Methods 37, 57–64 (2005).

    Article  Google Scholar 

  5. Lavrik, N. V., Sepaniak, M. J. & Datskos, P. G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75, 2229–2253 (2004).

    Article  Google Scholar 

  6. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  Google Scholar 

  7. Backmann, N. et al. A label-free immunosensor array using single-chain antibody fragments. Proc. Natl Acad. Sci. USA 102, 14587–14592 (2005).

    Article  Google Scholar 

  8. McKendry, R. et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA 99, 9783–9788 (2002).

    Article  Google Scholar 

  9. Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotech. 1, 214–220 (2006).

    Article  Google Scholar 

  10. Mukhopadhyay, R. et al. Cantilever sensor for nanomechanical detection of specific protein conformations. Nano Lett. 5, 2385–2388 (2005).

    Article  Google Scholar 

  11. Mertens, J. et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nature Nanotech. 3, 301–307 (2008).

    Article  Google Scholar 

  12. Braun, T. et al. Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Biophys. J. 90, 2970–2977 (2006).

    Article  Google Scholar 

  13. Bálint, Z. et al. Direct observation of protein motion during the photochemical reaction cycle of bacteriorhodopsin. Langmuir 23, 7225–7228 (2007).

    Article  Google Scholar 

  14. Gupta, A., Akin, D. & Bashir, R. Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84, 1976–1978 (2004).

    Article  Google Scholar 

  15. Gupta, R., Akin, D. & Bashir, R. Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J. Vac. Sci. Technol. B 22, 2785–2791 (2004).

    Article  Google Scholar 

  16. Gfeller, K. Y., Nugaeva, N. & Hegner, M. Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli. Appl. Environ. Microbiol. 71, 2626–2631 (2005).

    Article  Google Scholar 

  17. Nugaeva, N. et al. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microsc. Microanal. 13, 13–17 (2007).

    Article  Google Scholar 

  18. Braun, T. et al. Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys. Rev. E 72, 031907 (2005).

    Article  Google Scholar 

  19. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    Article  Google Scholar 

  20. Niesters, H. G. M. Molecular and diagnostic clinical virology in real time. Clin. Microbiol. Infect. 10, 5–11 (2004).

    Article  Google Scholar 

  21. Poynard, T., Yuen, M. F., Ratziu, V. & Lai, C. L. Viral hepatitis C. Lancet 362, 2095–2100 (2003).

    Article  Google Scholar 

  22. Braun, V. & Braun, M. Iron transport and signaling in Escherichia coli. FEBS Lett. 529, 78–85 (2002).

    Article  Google Scholar 

  23. Böhm, J. et al. FhuA-mediated phage genome transfer into liposomes: a cryo-electron tomography study. Curr. Biol. 11, 1168–1175 (2001).

    Article  Google Scholar 

  24. Locher, K. P. et al. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95, 771–778 (1998).

    Article  Google Scholar 

  25. Freifelder, D. Molecular weights of coliphages and coliphage DNA. IV. Molecular weights of DNA from bacteriophages T4, T5 and T7 and the general problem of determination of M. J. Mol. Biol. 54, 567–577 (1970).

    Article  Google Scholar 

  26. Boulanger, P. et al. Purification and structural and functional characterization of FhuA, a transporter of the Escherichia coli outer membrane. Biochemistry 35, 14216–14224 (1996).

    Article  Google Scholar 

  27. Jap, B. et al. 2D crystallization: from art to science. Ultramicroscopy 46, 45–84 (1992).

    Article  Google Scholar 

  28. Lambert, O. et al. An 8-Å projected structure of FhuA, A. ‘ligand-gated’ channel of the Escherichia coli outer membrane. J. Struct. Biol. 126, 145–155 (1999).

    Article  Google Scholar 

  29. Lambert, O., Letellier, L., Gelbart, W. M. & Rigaud, J. L. DNA delivery by phage as a strategy for encapsulating toroidal condensates of arbitrary size into liposomes. Proc. Natl Acad. Sci. USA 97, 7248–7253 (2000).

    Article  Google Scholar 

  30. Plancon, L. et al. Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5. J. Mol. Biol. 318, 557–569 (2002).

    Article  Google Scholar 

  31. Wagner, P., Hegner, M., Kernen, F., Zaugg, F. & Semenza, G. Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy. Biophys. J. 70, 2052–2066 (1996).

    Article  Google Scholar 

  32. Kenna, J. G., Major, G. N. & Williams, R. S. Methods for reducing non-specific antibody binding in enzyme-linked immunosorbent assays. J. Immunol. Methods 85, 409–419 (1985).

    Article  Google Scholar 

  33. Müller, D. J., Amrein, M. & Engel, A. Adsorption of biological molecules to a solid support for scanning probe microscopy. J. Struct. Biol. 119, 172–188 (1997).

    Article  Google Scholar 

  34. Ghatkesar, M. K. et al. Resonating modes of vibrating microcantilevers in liquid. Appl. Phys. Lett. 92, 3106–3109 (2008).

    Article  Google Scholar 

  35. Dorrestijn, M. et al. Chladni figures revisited based on nanomechanics. Phys. Rev. Lett. 98, 026102 (2007).

    Article  Google Scholar 

  36. Feucht, A., Heinzelmann, G. & Heller, K. J. Irreversible binding of bacteriophage-T5 to its FhuA receptor protein is associated with covalent cross-linking of 3 copies of tail protein-pb4. FEBS Lett. 255, 435–440 (1989).

    Article  Google Scholar 

  37. Braun, V. & Endriss, F. Energy-coupled outer membrane transport proteins and regulatory proteins. Biometals 20, 219–231 (2007).

    Article  Google Scholar 

  38. Bieri, C., Ernst, O. P., Heyse, S., Hofmann, K. P. & Vogel, H. Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nature Biotechnol. 17, 1105–1108 (1999).

    Article  Google Scholar 

  39. Heyse, S., Vogel, H., Sanger, M. & Sigrist, H. Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes. Protein Sci. 4, 2532–2544 (1995).

    Article  Google Scholar 

  40. Ghatkesar, M. K. et al. Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. Nanotechnology 18, 445502 (2007).

    Article  Google Scholar 

  41. Dohn, S., Sandberg, S., Svendsen, W. & Boisen, A. Enhanced functionality of cantilever based mass sensor using higher modes. Appl. Phys. Lett. 86, 233501 (2005).

    Article  Google Scholar 

  42. Tamayo, J., Humphris, A. D. & Malloy, A. M. Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86, 167–173 (2001).

    Article  Google Scholar 

  43. Feng, X. L., He, R., Yang, P. & Roukes, M. L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007).

    Article  Google Scholar 

  44. Despont, M., Drechsler, U., Yu, R., Pogge, H. B. & Vettiger, P. Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system. J. Microelectromech. Sci. 13, 895–901 (2004).

    Article  Google Scholar 

  45. Bietsch, A., Zhang, J., Hegner, M., Lang, H. P. & Gerber, C. Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15, 873–880 (2004).

    Article  Google Scholar 

  46. Hendrickson, H. E. & McCorquodale, D. J. Genetic and physiological studies of bacteriophage T5 I. An expanded genetic map of T5. J. Virol. 7, 612–618 (1971).

    Google Scholar 

  47. Grange, W., Husale, S., Guntherodt, H. J. & Hegner, M. Optical tweezers system measuring the change in light momentum flux. Rev. Sci. Instrum. 73, 2308–2316 (2002).

    Article  Google Scholar 

  48. Tamayo, J., Ramos, D., Mertens, J. & Calleja, M. Appl. Phys. Lett. 89, 224104 (2006).

    Article  Google Scholar 

  49. Braun, T. et al. Digital processing of multi-mode nano-mechanical cantilever data. J. Phys. Conf. Series 61, 341–345 (2007).

    Article  Google Scholar 

  50. Braun, T. et al. Processing of kinetic microarray signals. Sens. Act. B 128, 75–82 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Engel for the use of facilities for protein reconstitution at the Biozentrum, University of Basel, and M. Chami for fruitful discussions. We thank D. Mathys, M. Düggelin and M. Dürrenberger for their help with the SEM analysis. Financial and general support is acknowledged from Swiss National Science Foundation (NCCR Nanoscale Science), the Commission for Technology and Innovation (CTI) (TOPNANO21), the European Learning and Teaching Mobility Regio Network, the G.H. Endress Foundation, the Novartis Foundation and the Science Foundation Ireland CSET programme. M.K.G. thanks the Swiss National Science Foundation and the Novartis Foundation for a research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

T.B. and M.H. conceived and designed the experiments; T.B. and M.K.G. performed the experiments; T.B., M.K.G., W.G. and M.H. analysed the data; P.B. and L.L. contributed expertise in membrane proteins and phages; A.B. and T.B. were responsible for the ink-jet spotting of the membrane proteins; T.B., N.B., W.G., H.P.L. and M.H. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Martin Hegner.

Supplementary information

Supplementary Information

Supplementary Information (PDF 797 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, T., Ghatkesar, M., Backmann, N. et al. Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors. Nature Nanotech 4, 179–185 (2009). https://doi.org/10.1038/nnano.2008.398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing