Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets

Abstract

Highly ordered arrays of nanoparticles exhibit many properties that are not found in their disordered counterparts. However, these nanoparticle superlattices usually form in a far-from-equilibrium dewetting process, which precludes the use of conventional patterning methods owing to a lack of control over the local dewetting dynamics. Here, we report a simple yet efficient approach for patterning such superlattices that involves moulding microdroplets containing the nanoparticles and spatially regulating their dewetting process. This approach can provide rational control over the local nucleation and growth of the nanoparticle superlattices. Using DNA-capped gold nanoparticles as a model system, we have patterned nanoparticle superlattices over large areas into a number of versatile structures with high degrees of internal order, including single-particle-width corrals, single-particle-thickness microdiscs and submicrometre-sized ‘supra-crystals’. Remarkably, these features could be addressed by micropatterned electrode arrays, suggesting potential applications in bottom-up nanodevices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-sectional schematic of a microdroplet confined in a micromould showing centre dewetting (a–c) and edge dewetting (d–f).
Figure 2: Patterning nanoparticle superlattices by means of local dewetting dynamics regulation.
Figure 3: Versatile superlattice structures obtained by tailoring the inter-micromould spacing and micromould edge geometry.
Figure 4: Monolayered superlattice microdiscs and single-particle-width micro-corrals.
Figure 5: Addressing superlattices by micropatterned electrode arrays.
Figure 6: Patterning single-crystal arrays.

Similar content being viewed by others

References

  1. Aizenberg, J., Black, A. J. & Whitesides, G. M. Control of crystal nucleation by patterned self-assembled monolayers. Nature 398, 495–498 (1999).

    Article  CAS  Google Scholar 

  2. Briseno, A. L. et al. Patterning organic single-crystal transistor arrays. Nature 444, 913–917 (2006).

    Article  CAS  Google Scholar 

  3. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallines into 3-dimensional quantum-dot superlattices. Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  4. Kiely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444–446 (1998).

    Article  CAS  Google Scholar 

  5. Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 105, 3358–3371 (2001).

    Article  CAS  Google Scholar 

  6. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  7. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  8. Bigioni, T. P. et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nature Mater. 5, 265–270 (2006).

    Article  CAS  Google Scholar 

  9. Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E. & Heath, J. R. Reversible tuning of silver quantum dot monolayers through the metal–insulator transition. Science 277, 1978–1981 (1997).

    Article  CAS  Google Scholar 

  10. Korgel, B. A., Fullam, S., Connolly, S. & Fitzmaurice, D. Assembly and self-organization of silver nanocrystal superlattices: Ordered ‘soft spheres’. J. Phys. Chem. B 102, 8379–8388 (1998).

    Article  CAS  Google Scholar 

  11. Mueggenburg, K. E., Lin, X. M., Goldsmith, R. H. & Jaeger, H. M. Elastic membranes of close-packed nanoparticle arrays. Nature Mater. 6, 656–660 (2007).

    Article  CAS  Google Scholar 

  12. Courty, A., Mermet, A., Albouy, P. A., Duval, E. & Pileni, M. P. Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. Nature Mater. 4, 395–398 (2005).

    Article  CAS  Google Scholar 

  13. Urban, J. J., Talapin, D. V., Shevchenko, E. V., Kagan, C. R. & Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag–2 Te thin films. Nature Mater. 6, 115–121 (2007).

    Article  CAS  Google Scholar 

  14. Shevchenko, E. V., Talapin, D. V., Murray, C. B. & O'Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am .Chem. Soc. 128, 3620–3637 (2006).

    Article  CAS  Google Scholar 

  15. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    Article  CAS  Google Scholar 

  16. Rabani, E., Reichman, D. R., Geissler, P. L. & Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 (2003).

    Article  CAS  Google Scholar 

  17. Martin, C. P. et al. Controlling pattern formation in nanoparticle assemblies via directed solvent dewetting. Phys. Rev. Lett. 99, 116103 (2007).

    Article  Google Scholar 

  18. Huang, J. X., Fan, R., Connor, S. & Yang, P. D. One-step patterning of aligned nanowire arrays by programmed dip coating. Angew. Chem. Int. Ed. 46, 2414–2417 (2007).

    Article  CAS  Google Scholar 

  19. Hamann, H. F., Woods, S. I. & Sun, S. H. Direct thermal patterning of self-assembled nanoparticles. Nano Lett. 3, 1643–1645 (2003).

    Article  CAS  Google Scholar 

  20. Cherniavskaya, O. et al. Edge transfer lithography of molecular and nanoparticle materials. Langmuir 18, 7029–7034 (2002).

    Article  CAS  Google Scholar 

  21. Lu, N. et al. Lateral patterning of luminescent CdSe nanocrystals by selective dewetting from self-assembled organic templates. Nano Lett. 4, 885–888 (2004).

    Article  CAS  Google Scholar 

  22. Santhanam, V. & Andres, R. P. Microcontact printing of uniform nanoparticle arrays. Nano Lett. 4, 41–44 (2004).

    Article  CAS  Google Scholar 

  23. Kraus, T. et al. Nanoparticle printing with single-particle resolution. Nature Nanotech. 2, 570–576 (2007).

    Article  CAS  Google Scholar 

  24. Kumar, A. & Whitesides, G. M. Patterned condensation figures as optical diffraction gratings. Science 263, 60–62 (1994).

    Article  CAS  Google Scholar 

  25. Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: From microchannels to microchips. Science 283, 46–49 (1999).

    Article  CAS  Google Scholar 

  26. Lenz, P. & Lipowsky, R. Morphological transitions of wetting layers on structured surfaces. Phys. Rev. Lett. 80, 1920–1923 (1998).

    Article  CAS  Google Scholar 

  27. Lenz, P. Wetting phenomena on structured surfaces. Adv. Mater. 11, 1531–1534 (1999).

    Article  CAS  Google Scholar 

  28. Xia, Y. N., Qin, D. & Yin, Y. D. Surface patterning and its application in wetting/dewetting studies. Curr. Opin. Colloid Interface Sci. 6, 54–64 (2001).

    Article  CAS  Google Scholar 

  29. Cavallini, M. & Biscarini, F. Nanostructuring conjugated materials by lithographically controlled wetting. Nano Lett. 3, 1269–1271 (2003).

    Article  CAS  Google Scholar 

  30. Xia, Y. N. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  CAS  Google Scholar 

  31. Klajn, R. et al. Plastic and mouldable metals by self-assembly of sticky nanoparticle aggregates. Science 316, 261–264 (2007).

    Article  CAS  Google Scholar 

  32. Kim, E., Xia, Y. N. & Whitesides, G. M. Two- and three-dimensional crystallization of polymeric microspheres by micromoulding in capillaries. Adv. Mater. 8, 245–247 (1996).

    Article  CAS  Google Scholar 

  33. Kim, E., Xia, Y. N. & Whitesides, G. M. Micromoulding in capillaries: Applications in materials science. J. Am. Chem. Soc. 118, 5722–5731 (1996).

    Article  CAS  Google Scholar 

  34. Dussan, E. B. Spreading of liquids on solid-surfaces—static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371–400 (1979).

    Article  Google Scholar 

  35. Rio, E., Daerr, A., Lequeux, F. & Limat, L. Moving contact lines of a colloidal suspension in the presence of drying. Langmuir 22, 3186–3191 (2006).

    Article  CAS  Google Scholar 

  36. Deegan, R. D. et al. Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765 (2000).

    Article  CAS  Google Scholar 

  37. Shmuylovich, L., Shen, A. Q. & Stone, H. A. Surface morphology of drying latex films: Multiple ring formation. Langmuir 18, 3441–3445 (2002).

    Article  CAS  Google Scholar 

  38. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  39. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  40. Velev, O. D. Self-assembly of unusual nanoparticle crystals. Science 312, 376–377 (2006).

    Article  CAS  Google Scholar 

  41. Yin, Y. D., Lu, Y., Gates, B. & Xia, Y. N. Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes and structures. J. Am. Chem. Soc. 123, 8718–8729 (2001).

    Article  CAS  Google Scholar 

  42. Leopold, M. C. et al. Growth, conductivity and vapor response properties of metal ion–carboxylate linked nanoparticle films. Faraday Discuss. 125, 63–76 (2004).

    Article  CAS  Google Scholar 

  43. Frens, G. Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature Phys. Sci. 241, 20–22 (1973).

    Article  CAS  Google Scholar 

  44. Rieger, B., van den Doel, L. R. & van Vliet, L. J. Ring formation in nanolitre cups: Quantitative measurements of flow in micromachined wells. Phys. Rev. E 68, 036312 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Jung-Jen Li, J. Kahn, M. Campolongo, V. Pinskiy and V.L. Morales for technical help and discussions. The work is partially supported by NYSTAR and NSF CAREER award (grant number 0547330). The authors also thank J.C. March for proof-reading this manuscript. N.P. wishes to acknowledge the Korea Research Foundation Grant (04-03-05-2) for support.

Author information

Authors and Affiliations

Authors

Contributions

W.L.C. and D.L. conceived and designed the experiments. W.L.C., N.P. and M.R.H. performed the experiments. W.L.C. and D.L. analysed the data. W.L.C., N.P., M.T.W., M.R.H. and D.L. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Dan Luo.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2358 kb)

Supplementary Information

Supplementary Movie S1 (AVI 578 kb)

Supplementary Information

Supplementary Movie S2 (AVI 414 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Park, N., Walter, M. et al. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nature Nanotech 3, 682–690 (2008). https://doi.org/10.1038/nnano.2008.279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing