Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Approaching ballistic transport in suspended graphene

Abstract

The discovery of graphene1,2 raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties3,4,5,6 of this one-atom-thick layer of carbon. Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point. However, when the graphene sample is supported on an insulating substrate, potential fluctuations induce charge puddles that obscure the Dirac point physics. Here we show that the fluctuations are significantly reduced in suspended graphene samples and we report low-temperature mobility approaching 200,000 cm2 V−1 s−1 for carrier densities below 5 × 109 cm−2. Such values cannot be attained in semiconductors or non-suspended graphene. Moreover, unlike graphene samples supported by a substrate, the conductivity of suspended graphene at the Dirac point is strongly dependent on temperature and approaches ballistic values at liquid helium temperatures. At higher temperatures, above 100 K, we observe the onset of thermally induced long-range scattering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suspended graphene (SG) sample characterization.
Figure 2: Carrier density dependence of transport.
Figure 3: Potential fluctuations.
Figure 4: Mobility and mean free path (mfp) of hole branch carriers.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  2. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  Google Scholar 

  3. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  Google Scholar 

  4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  Google Scholar 

  5. Castro Neto, A. H., Guinea, F., Peres, N.M.R., Novoselov, K.S. & Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. Preprint at <http://arxiv.org/abs/0709.1163> (2007).

  6. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  Google Scholar 

  7. Cheianov, V. V., Fal'ko, V. & Altshuter, B. L. The focusing of electron flow and a veselago lens in graphene p-n junctions. Science 315, 1252–1255 (2007).

    Article  Google Scholar 

  8. Cuevas, J. C. & Yeyati, A. Levy subharmonic gap structure in short ballistic graphene junctions. Phys. Rev. B 74, 180501 (2006).

    Article  Google Scholar 

  9. Beenakker, C. W. J. Specular Andreev reflection in graphene. Phys. Rev. Lett. 97, 067007 (2006).

    Article  Google Scholar 

  10. Tworzydlo, J. et al. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006).

    Article  Google Scholar 

  11. DiCarlo, L. et al. Shot noise in graphene. Phys. Rev. Lett. 100, 156801 (2008).

    Article  Google Scholar 

  12. Du, X., Skachko, I. & Andrei, E. Y. Josephson current and multiple Andreev reflections in graphene SNS junctions. Phys. Rev. B 77, 184507 (2008).

    Article  Google Scholar 

  13. Sabio, J. et al. Electrostatic interactions between graphene layers and their environment. Phys. Rev. B 77, 195409 (2008).

    Article  Google Scholar 

  14. Cho, S. & Fuhrer, M. S. Charge transport and inhomogeneity near the minimum conductivity point in graphene. Phys. Rev. B 77, 081402 (2008).

    Article  Google Scholar 

  15. Hwang, E. H., Adam, S. & Das Sarma, S. Das Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806 (2007).

    Article  Google Scholar 

  16. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  Google Scholar 

  17. Guinea, F., Katsnelson, M. I. & Vozmediano, M. A. H. Midgap states and charge inhomogeneities in corrugated graphene. Phys. Rev. B 77, 075422 (2008).

    Article  Google Scholar 

  18. Katsnelson, M. I. & Geim, A. K. Electron scattering on microscopic corrugations in graphene. Phil. Trans. Roy. Soc. A 366, 195–204 (2008).

    Article  Google Scholar 

  19. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  Google Scholar 

  20. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  Google Scholar 

  21. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, New York, 1995).

    Book  Google Scholar 

  22. Tan, Y. W. et al. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 99, 246803 (2007).

    Article  Google Scholar 

  23. Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    Article  Google Scholar 

  24. Stauber, T., Peres, N. M. R. & Guinea, F. Electronic transport in graphene: A semiclassical approach including midgap states. Phys. Rev. B 76, 205423 (2007).

    Article  Google Scholar 

  25. Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).

    Article  Google Scholar 

  26. Mariani, E. & von Oppen, F. Flexural phonons in free-standing graphene. Phys. Rev. Lett. 100, 076801 (2008).

    Article  Google Scholar 

  27. Fritz, L., Schmalian, J., Mueller, M. & Sachdev, S. Quantum critical transport in clean graphene. arXiv:0802.4289v2 (2008).

  28. Brey, L. & Palacios, J. J. Exchange-induced charge inhomogeneities in rippled neutral graphene. Phys. Rev. B 77, 041403 (2008).

    Article  Google Scholar 

  29. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Li and Z. Chen for discussions, S.W. Cheong and M. Gershenson for use of the atomic force microscope and e-beam equipment, V. Kiryukhin for the highly ordered pyrolytic graphite crystals, F. Guinea, A.H. Castro Neto, A. Balatsky, M. Fogler and D. Abanin for further useful discussions. Our work was supported by DOE DE-FG02-99ER45742; and ICAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Y. Andrei.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, X., Skachko, I., Barker, A. et al. Approaching ballistic transport in suspended graphene. Nature Nanotech 3, 491–495 (2008). https://doi.org/10.1038/nnano.2008.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing