Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of dip-pen nanolithography

Abstract

The ability to tailor the chemical composition and structure of a surface at the sub-100-nm length scale is important for studying topics ranging from molecular electronics to materials assembly, and for investigating biological recognition at the single biomolecule level. Dip-pen nanolithography (DPN) is a scanning probe microscopy-based nanofabrication technique that uniquely combines direct-write soft-matter compatibility with the high resolution and registry of atomic force microscopy (AFM), which makes it a powerful tool for depositing soft and hard materials, in the form of stable and functional architectures, on a variety of surfaces. The technology is accessible to any researcher who can operate an AFM instrument and is now used by more than 200 laboratories throughout the world. This article introduces DPN and reviews the rapid growth of the field of DPN-enabled research and applications over the past several years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dip-pen nanolithography (DPN).
Figure 2: Detection of HIV-1 p24 antigen using a nanoarray of anti-p24 antibody.
Figure 3: Monolayer templates defined by DPN are used to screen phase separation in polymer blend films.
Figure 5: Examples of variants of DPN.
Figure 6: DPN patterning with 55,000 AFM cantilevers in parallel.
Figure 4: SWNTs assembled into rings on chemical templates.

Similar content being viewed by others

References

  1. Gates, B. D. et al. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    CAS  Google Scholar 

  2. Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: A review. J. Vac. Sci. Tech. B 23, 877–894 (2005).

    CAS  Google Scholar 

  3. Kramer, S., Fuierer, R. R. & Gorman, C. B. Scanning probe lithography using self-assembled monolayers. Chem. Rev. 103, 4367–4418 (2003).

    Google Scholar 

  4. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    CAS  Google Scholar 

  5. Liu, S., Maoz, R. & Sagiv, J. Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality. Nano Lett. 4, 845–851 (2004).

    CAS  Google Scholar 

  6. Maoz, R., Cohen, S. R. & Sagiv, J. Nanoelectrochemical patterning of monolayer surfaces. Toward spatially defined self-assembly of nanostructures. Adv. Mater. 11, 55–61 (1999).

    CAS  Google Scholar 

  7. Piner, R. D., Zhu, J., Xu, F., Hong, S. H. & Mirkin, C. A. “Dip-pen” nanolithography. Science 283, 661–663 (1999).

    CAS  Google Scholar 

  8. Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Edn 43, 30–45 (2004).

    Google Scholar 

  9. Mirkin, C. A., Piner, R. & Hong, S. Methods using scanning probe microscope tips and products therefor or produced thereby. US patent 2002063212; International patent 2000041213.

  10. Nelson, B. A., King, W. P., Laracuente, A. R., Sheehan, P. E. & Whitman, L. J. Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography. Appl. Phys. Lett. 88, 033104 (2006).

    Google Scholar 

  11. Hong, S. H., Zhu, J. & Mirkin, C. A. Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286, 523–525 (1999).

    CAS  Google Scholar 

  12. Hong, S. H., Zhu, J. & Mirkin, C. A. A new tool for studying the in situ growth processes for self-assembled monolayers under ambient conditions. Langmuir 15, 7897–7900 (1999).

    CAS  Google Scholar 

  13. Jaschke, M. & Butt, H. -J. Deposition of organic material by the tip of a scanning force microscope. Langmuir 11, 1061–4 (1995).

    CAS  Google Scholar 

  14. Zhang, Y., Salaita, K., Lim, J. H., Lee, K. B. & Mirkin, C. A. A massively parallel electrochemical approach to the miniaturization of organic micro- and nanostructures on surfaces. Langmuir 20, 962–968 (2004).

    CAS  Google Scholar 

  15. Zhang, Y., Salaita, K., Lim, J. H. & Mirkin, C. A. Electrochemical whittling of organic nanostructures. Nano Lett. 2, 1389–1392 (2002).

    CAS  Google Scholar 

  16. Vesper, B. J. et al. Surface-bound porphyrazines: Controlling reduction potentials of self-assembled monolayers through molecular proximity/orientation to a metal surface. J. Am. Chem. Soc. 126, 16653–16658 (2004).

    CAS  Google Scholar 

  17. Bruinink, C. M. et al. Supramolecular microcontact printing and dip-pen nanolithography on molecular printboards. Chem. Eur. J. 11, 3988–3996 (2005).

    CAS  Google Scholar 

  18. Auletta, T. et al. Writing patterns of molecules on molecular printboards. Angew. Chem. Int. Edn 43, 369–373 (2004).

    CAS  Google Scholar 

  19. Zhou, H. L., Li, Z., Wu, A. G., Wei, G. & Liu, Z. G. Direct patterning of Rhodamine 6G molecules on mica by dip-pen nanolithography. Appl. Surf. Sci. 236, 18–24 (2004).

    CAS  Google Scholar 

  20. Kooi, S. E., Baker, L. A., Sheehan, P. E. & Whitman, L. J. Dip-pen nanolithography of chemical templates on silicon oxide. Adv. Mater. 16, 1013–1016 (2004).

    CAS  Google Scholar 

  21. Ivanisevic, A., McCumber, K. V. & Mirkin, C. A. Site-directed exchange studies with combinatorial libraries of nanostructures. J. Am. Chem. Soc. 124, 11997–12001 (2002).

    CAS  Google Scholar 

  22. Nyamjav, D. & Ivanisevic, A. Properties of polyelectrolyte templates generated by dip-pen nanolithography and microcontact printing. Chem. Mater. 16, 5216–5219 (2004).

    CAS  Google Scholar 

  23. Su, M., Aslam, M., Fu, L., Wu, N. Q. & Dravid, V. P. Dip-pen nanopatterning of photosensitive conducting polymer using a monomer ink. Appl. Phys. Lett. 84, 4200–4202 (2004).

    CAS  Google Scholar 

  24. Liu, X. G. et al. The controlled evolution of a polymer single crystal. Science 307, 1763–1766 (2005).

    CAS  Google Scholar 

  25. Lim, J. H. & Mirkin, C. A. Electrostatically driven dip-pen nanolithography of conducting polymers. Adv. Mater. 14, 1474–1477 (2002).

    CAS  Google Scholar 

  26. Noy, A. et al. Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography. Nano Lett. 2, 109–112 (2002).

    CAS  Google Scholar 

  27. Qin, L. D., Park, S., Huang, L. & Mirkin, C. A. On-wire lithography. Science 309, 113–115 (2005).

    CAS  Google Scholar 

  28. Demers, L. M., Ginger, D. S., Park, S. J., Li, Z., Chung, S. W. & Mirkin, C. A. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836–1838 (2002).

    CAS  Google Scholar 

  29. Chung, S. W. et al. Top-down meets bottom-up: Dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. Small 1, 64–69 (2005).

    CAS  Google Scholar 

  30. Lee, K. B., Lim, J. H. & Mirkin, C. A. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125, 5588–5589 (2003).

    CAS  Google Scholar 

  31. Lim, J. H. et al. Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew. Chem. Int. Edn 42, 2309–2312 (2003).

    CAS  Google Scholar 

  32. Lee, K. B., Park, S. J., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

    CAS  Google Scholar 

  33. Lee, M. et al. Protein nanoarray on Prolinker™ surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction. Proteomics 6, 1094–1103 (2006).

    CAS  Google Scholar 

  34. Cho, Y. & Ivanisevic, A. TAT peptide immobilization on gold surfaces: A comparison study with a thiolated peptide and alkylthiols using AFM, XPS, and FT-IRRAS. J. Phys. Chem. B 109, 6225–6232 (2005).

    CAS  Google Scholar 

  35. Cho, Y. & Ivanisevic, A. SiOx surfaces with lithographic features composed of a TAT peptide. J. Phys. Chem. B 108, 15223–15228 (2004).

    CAS  Google Scholar 

  36. Jiang, H. Z. & Stupp, S. I. Dip-pen patterning and surface assembly of peptide amphiphiles. Langmuir 21, 5242–5246 (2005).

    CAS  Google Scholar 

  37. Gundiah, G. et al. Dip-pen nanolithography with magnetic Fe2O3 nanocrystals. Appl. Phys. Lett. 84, 5341–5343 (2004).

    CAS  Google Scholar 

  38. Ding, L., Li, Y., Chu, H. B., Li, X. M. & Liu, J. Creation of cadmium sulfide nanostructures using AFM dip-pen nanolithography. J. Phys. Chem. B 109, 22337–22340 (2005).

    CAS  Google Scholar 

  39. Li, J. Y., Lu, C. G., Maynor, B., Huang, S. M. & Liu, J. Controlled growth of long gan nanowires from catalyst patterns fabricated by “dip-pen” nanolithographic techniques. Chem. Mater. 16, 1633–1636 (2004).

    CAS  Google Scholar 

  40. Fu, L., Liu, X. G., Zhang, Y., Dravid, V. P. & Mirkin, C. A. Nanopatterning of “hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3, 757–760 (2003).

    CAS  Google Scholar 

  41. Su, M., Liu, X. G., Li, S. Y., Dravid, V. P. & Mirkin, C. A. Moving beyond molecules: Patterning solid-state features via dip-pen nanolithography with sol-based inks. J. Am. Chem. Soc. 124, 1560–1561 (2002).

    CAS  Google Scholar 

  42. Agarwal, G., Naik, R. R. & Stone, M. O. Immobilization of histidine-tagged proteins on nickel by electrochemical dip pen nanolithography. J. Am. Chem. Soc. 125, 7408–7412 (2003).

    CAS  Google Scholar 

  43. Jang, J., Schatz, G. C. & Ratner, M. A. Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 90, 156104 (2003).

    Google Scholar 

  44. Lee, N. K. & Hong, S. H. Modeling collective behavior of molecules in nanoscale direct deposition processes. J. Chem. Phys. 124, 114711–114715 (2006).

    Google Scholar 

  45. Ahn, Y., Hong, S. & Jang, J. Growth dynamics of self-assembled monolayers in dip-pen nanolithography. J. Phys. Chem. B 110, 4270–4273 (2006).

    CAS  Google Scholar 

  46. Manandhar, P., Jang, J., Schatz, G. C., Ratner, M. A. & Hong, S. Anomalous surface diffusion in nanoscale direct deposition processes. Phys. Rev. Lett. 90, 115505 (2003).

    CAS  Google Scholar 

  47. Jang, J. Y., Schatz, G. C. & Ratner, M. A. How narrow can a meniscus be? Phys. Rev. Lett. 92, 085504 (2004).

    Google Scholar 

  48. Jang, J. K., Schatz, G. C. & Ratner, M. A. Capillary force in atomic force microscopy. J. Chem. Phys. 120, 1157–1160 (2004).

    CAS  Google Scholar 

  49. Jang, J. Y., Schatz, G. C. & Ratner, M. A. Liquid meniscus condensation in dip-pen nanolithography. J. Chem. Phys. 116, 3875–3886 (2002).

    CAS  Google Scholar 

  50. Cho, N., Ryu, S., Kim, B., Schatz, G. C. & Hong, S. H. Phase of molecular ink in nanoscale direct deposition processes. J. Chem. Phys. 124, 024714 (2006).

    Google Scholar 

  51. Sheehan, P. E. & Whitman, L. J. Thiol diffusion and the role of humidity in “dip pen nanolithography”. Phys. Rev. Lett. 88, 156104–156107 (2002).

    CAS  Google Scholar 

  52. Weeks, B. L., Noy, A., Miller, A. E. & De Yoreo, J. J. Effect of dissolution kinetics on feature size in dip-pen nanolithography. Phys. Rev. Lett. 88, 255505 (2002).

    CAS  Google Scholar 

  53. Peterson, E. J., Weeks, B. L., De Yoreo, J. J. & Schwartz, P. V. Effect of environmental conditions on dip pen nanolithography of mercaptohexadecanoic acid. J. Phys. Chem. B 108, 15206–15210 (2004).

    CAS  Google Scholar 

  54. Schwartz, P. V. Molecular transport from an atomic force microscope tip: A comparative study of dip-pen nanolithography. Langmuir 18, 4041–4046 (2002).

    CAS  Google Scholar 

  55. Salaita, K., Amarnath, A., Maspoch, D., Higgins, T. B. & Mirkin, C. A. Spontaneous “phase separation” of patterned binary alkanethiol mixtures. J. Am. Chem. Soc. 127, 11283–11287 (2005).

    CAS  Google Scholar 

  56. Hampton, J. R., Dameron, A. A. & Weiss, P. S. Double-ink dip-pen nanolithography studies elucidate molecular transport. J. Am. Chem. Soc. 128, 1648–1653 (2006).

    CAS  Google Scholar 

  57. Hampton, J. R., Dameron, A. A. & Weiss, P. S. Transport rates vary with deposition time in dip-pen nanolithography. J. Phys. Chem. B 109, 23118–23120 (2005).

    CAS  Google Scholar 

  58. Rozhok, S., Piner, R. & Mirkin, C. A. Dip-pen nanolithography: What controls ink transport? J. Phys. Chem. B 107, 751–757 (2003).

    CAS  Google Scholar 

  59. Rozhok, S., Sun, P., Piner, R., Lieberman, M. & Mirkin, C. A. AFM study of water meniscus formation between an AFM tip and NaCl substrate. J. Phys. Chem. B 108, 7814–7819 (2004).

    CAS  Google Scholar 

  60. Moldovan, N., Kim, K. H. & Espinosa, H. D. Design and fabrication of a novel microfluidic nanoprobe. J. Microelectromech. Syst. 15, 204–213 (2006).

    Google Scholar 

  61. Bullen, D. & Liu, C. Electrostatically actuated dip pen nanolithography probe arrays. Sens. Actuators A 125, 504–511 (2006).

    CAS  Google Scholar 

  62. Wang, X. F. & Liu, C. Multifunctional probe array for nano patterning and imaging. Nano Lett. 5, 1867–1872 (2005).

    CAS  Google Scholar 

  63. Lee, K. B., Kim, E. Y., Mirkin, C. A. & Wolinsky, S. M. The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma. Nano Lett. 4, 1869–1872 (2004).

    CAS  Google Scholar 

  64. Cheung, C. L. et al. Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J. Am. Chem. Soc. 125, 6848–6849 (2003).

    CAS  Google Scholar 

  65. Smith, J. C. et al. Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett. 3, 883–886 (2003).

    CAS  Google Scholar 

  66. Vega, R. A., Maspoch, D., Salaita, K. & Mirkin, C. A. Nanoarrays of single virus particles. Angew. Chem. Int. Edn 44, 6013–6015 (2005).

    CAS  Google Scholar 

  67. Rozhok, S. et al. Methods for fabricating microarrays of motile bacteria. Small 1, 445–451 (2005).

    CAS  Google Scholar 

  68. Hyun, J., Kim, J., Craig, S. L. & Chilkoti, A. Enzymatic nanolithography of a self-assembled oligonucleotide monolayer on gold. J. Am. Chem. Soc. 126, 4770–4771 (2004).

    CAS  Google Scholar 

  69. Xu, P. & Kaplan, D. L. Nanoscale surface patterning of enzyme-catalyzed polymeric conducting wires. Adv. Mater. 16, 628–633 (2004).

    CAS  Google Scholar 

  70. Xu, P., Uyama, H., Whitten, J. E., Kobayashi, S. & Kaplan, D. L. Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid. J. Am. Chem. Soc. 127, 11745–11753 (2005).

    CAS  Google Scholar 

  71. Basnar, B., Weizmann, Y., Cheglakov, Z. & Willner, I. Synthesis of nanowires using dip-pen nanolithography and biocatalytic inks. Adv. Mater. 18, 713–718 (2006).

    CAS  Google Scholar 

  72. Coffey, D. C. & Ginger, D. S. Patterning phase separation in polymer films with dip-pen nanolithography. J. Am. Chem. Soc. 127, 4564–4565 (2005).

    CAS  Google Scholar 

  73. Yu, M., Nyamjav, D. & Ivanisevic, A. Fabrication of positively and negatively charged polyelectrolyte structures by dip-pen nanolithography. J. Mater. Chem. 15, 649–652 (2005).

    CAS  Google Scholar 

  74. Lee, S. W., Sanedrin, R. G., Oh, B. K. & Mirkin, C. A. Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography. Adv. Mater. 17, 2749–2753 (2005).

    CAS  Google Scholar 

  75. Rao, S. G., Huang, L., Setyawan, W. & Hong, S. H. Large-scale assembly of carbon nanotubes. Nature 425, 36–37 (2003).

    CAS  Google Scholar 

  76. Wang, Y. et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl Acad. Sci. USA 103, 2026–2031 (2006).

    CAS  Google Scholar 

  77. Myung, S., Lee, M., Kim, G. T., Ha, J. S. & Hong, S. Large-scale “surface-programmed assembly” of pristine vanadium oxide nanowire-based devices. Adv. Mater. 17, 2361–2364 (2005).

    CAS  Google Scholar 

  78. Liu, X. G., Fu, L., Hong, S. H., Dravid, V. P. & Mirkin, C. A. Arrays of magnetic nanoparticles patterned via “dip-pen” nanolithography. Adv. Mater. 14, 231–234 (2002).

    Google Scholar 

  79. Demers, L. M., Park, S. -J., Taton, T. A., Li, Z. & Mirkin, C. A. Orthogonal assembly of nanoparticles building blocks on dip-pen nanolithographically generated templates of DNA. Angew. Chem. Int. Edn 40, 3071–3073 (2001).

    CAS  Google Scholar 

  80. Demers, L. M. & Mirkin, C. A. Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays. Angew. Chem. Int. Edn 40, 3069–3071 (2001).

    CAS  Google Scholar 

  81. Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

    CAS  Google Scholar 

  82. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    CAS  Google Scholar 

  83. Stranick, S. J., Parikh, A. N., Tao, Y. T., Allara, D. L. & Weiss, P. S. Phase-separation of mixed-composition self-assembled monolayers into nanometer-scale molecular domains. J. Phys. Chem. 98, 7636–7646 (1994).

    CAS  Google Scholar 

  84. Imabayashi, S., Hobara, D., Kakiuchi, T. & Knoll, W. Selective replacement of adsorbed alkanethiols in phase-separated binary self-assembled monolayers by electrochemical partial desorption. Langmuir 13, 4502–4504 (1997).

    CAS  Google Scholar 

  85. Salaita, K. S., Lee, S. W., Ginger, D. S. & Mirkin, C. A. DPN-generated nanostructures as positive resists for preparing lithographic masters or hole arrays. Nano Lett. 6, 2493–2498 (2006).

    CAS  Google Scholar 

  86. Onclin, S., Ravoo, B. J. & Reinhoudt, D. N. Engineering silicon oxide surfaces using self-assembled monolayers. Angew. Chem. Int. Edn 44, 6282–6304 (2005).

    CAS  Google Scholar 

  87. Mulder, A. et al. Molecular printboards on silicon oxide: Lithographic patterning of cyclodextrin monolayers with multivalent, fluorescent guest molecules. Small 1, 242–253 (2005).

    CAS  Google Scholar 

  88. Degenhart, G. H., Dordi, B., Schonherr, H. & Vancso, G. J. Micro- and nanofabrication of robust reactive arrays based on the covalent coupling of dendrimers to activated monolayers. Langmuir 20, 6216–6224 (2004).

    CAS  Google Scholar 

  89. Kim, K. H. et al. Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Small 1, 866–874 (2005).

    CAS  Google Scholar 

  90. Wang, X. F. et al. Scanning probe contact printing. Langmuir 19, 8951–8955 (2003).

    CAS  Google Scholar 

  91. Kim, K. H., Moldovan, N. & Espinosa, H. D. A nanofountain probe with sub-100 nm molecular writing resolution. Small 1, 632–635 (2005).

    CAS  Google Scholar 

  92. Zhang, H., Elghanian, R., Amro, N. A., Disawal, S. & Eby, R. Dip pen nanolithography stamp tip. Nano Lett. 4, 1649–1655 (2004).

    CAS  Google Scholar 

  93. Wang, X. F., Bullen, D. A., Zou, J., Liu, C. & Mirkin, C. A. Thermally actuated probe array for parallel dip-pen nanolithography. J. Vac. Sci. Tech. B 22, 2563–2567 (2004).

    CAS  Google Scholar 

  94. Bullen, D. et al. Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84, 789–791 (2004).

    CAS  Google Scholar 

  95. Li, Y., Maynor, B. W. & Liu, J. Electrochemical AFM “dip-pen” nanolithography. J. Am. Chem. Soc. 123, 2105–2106 (2001).

    CAS  Google Scholar 

  96. Cai, Y. G. & Ocko, B. M. Electro pen nanolithography. J. Am. Chem. Soc. 127, 16287–16291 (2005).

    CAS  Google Scholar 

  97. Unal, K., Frommer, J. & Wickramasinghe, H. K. Ultrafast molecule sorting and delivery by atomic force microscopy. Appl. Phys. Lett. 88, 183105/1–183105/3 (2006).

    CAS  Google Scholar 

  98. Sheehan, P. E., Whitman, L. J., King, W. P. & Nelson, B. A. Nanoscale deposition of solid inks via thermal dip pen nanolithography. Appl. Phys. Lett. 85, 1589–1591 (2004).

    CAS  Google Scholar 

  99. Huang, L., Chang, Y. -H., Kakkassery, J. J. & Mirkin, C. A. Dip-pen nanolithography of high-melting-temperature molecules. J. Phys. Chem. B 110, 20756–20758 (2006).

    CAS  Google Scholar 

  100. Zou, J. et al. A mould-and-transfer technology for fabricating scanning probe microscopy probes. J. Micromech. Microeng. 14, 204–211 (2004).

    CAS  Google Scholar 

  101. Lewis, A. et al. Fountain pen nanochemistry: Atomic force control of chrome etching. Appl. Phys. Lett. 75, 2689–2691 (1999).

    CAS  Google Scholar 

  102. Ying, L. M. et al. The scanned nanopipette: A new tool for high resolution bioimaging and controlled deposition of biomolecules. Phys. Chem. Chem. Phys. 7, 2859–2866 (2005).

    CAS  Google Scholar 

  103. Bruckbauer, A. et al. Writing with DNA and protein using a nanopipet for controlled delivery. J. Am. Chem. Soc. 124, 8810–8811 (2002).

    CAS  Google Scholar 

  104. Bruckbauer, A. et al. Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc. 125, 9834–9839 (2003).

    CAS  Google Scholar 

  105. Sniadecki, N., Desai, R. A., Ruiz, S. A. & Chen, C. S. Nanotechnology for cell-substrate interactions. Ann. Biomed. Eng. 34, 59–74 (2006).

    Google Scholar 

  106. Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001).

    CAS  Google Scholar 

  107. Lutwyche, M. et al. 5×5 2D AFM cantilever arrays a first step towards a terabit storage device. Sens. Actuators A 73, 89–94 (1999).

    CAS  Google Scholar 

  108. Minne, S. C. et al. Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73, 1742–1744 (1998).

    CAS  Google Scholar 

  109. Minne, S. C., Manalis, S. R., Atalar, A. & Quate, C. F. Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Tech. B 14, 2456–2461 (1996).

    CAS  Google Scholar 

  110. Minne, S. C., Manalis, S. R. & Quate, C. F. Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl. Phys. Lett. 67, 3918–3920 (1995).

    CAS  Google Scholar 

  111. Despont, M., Drechsler, U., Yu, R., Pogge, H. B. & Vettiger, P. Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system. J. Microelectromech. Syst. 13, 895–901 (2004).

    CAS  Google Scholar 

  112. Eleftheriou, E. et al. Millipede - a MEMS-based scanning-probe data-storage system. IEEE Trans. Magnetics 39, 938–945 (2003).

    Google Scholar 

  113. Vettiger, P. et al. The “Millipede” - nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002).

    Google Scholar 

  114. King, W. P. et al. Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation. J. Microelectromech. Syst. 11, 765–774 (2002).

    CAS  Google Scholar 

  115. Vettiger, P. et al. The “Millipede” - more than one thousand tips for future afm data storage. IBM J. Res. Develop. 44, 323–340 (2000).

    CAS  Google Scholar 

  116. Zhang, M. et al. A mems nanoplotter with high-density parallel dip-pen manolithography probe arrays. Nanotechnology 13, 212–217 (2002).

    CAS  Google Scholar 

  117. Salaita, K. et al. Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 1, 940–945 (2005).

    CAS  Google Scholar 

  118. Wang, X. F., Vincent, L., Bullen, D., Zou, J. & Liu, C. Scanning probe lithography tips with spring-on-tip designs: Analysis, fabrication, and testing. Appl. Phys. Lett. 87, 054102 (2005).

    Google Scholar 

  119. Salaita, K. et al. Massively parallel dip-pen nanolithography with 55,000-pen two-dimensional arrays. Angew. Chem. Int. Edn 45 (2006).

  120. Lenhert, S., Sun, P., Wang, Y., Mirkin, C. A. & Fuchs, H. Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small 3, 71–75 (2007).

    CAS  Google Scholar 

  121. Liu, G. Y., Xu, S. & Qian, Y. L. Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Res. 33, 457–466 (2000).

    Google Scholar 

  122. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001).

    CAS  Google Scholar 

  123. Rosner, B. et al. Active probes and microfluidic ink delivery for dip pen nanolithography. Proc. SPIE: BioMEMS Nanotechnol. 5275, 213–222 (2004).

    CAS  Google Scholar 

  124. Rosner, B. et al. Functional extensions of dip pen nanolithography: Active probes and microfluidic ink delivery. Smart Mater. Struct. 15, S124–S130 (2006).

    Google Scholar 

Download references

Acknowledgements

C.A.M. acknowledges the Air Force Office of Scientific Research, Defense Advanced Research Projects Agency, Army Research Office, National Science Foundation, and NIH through a Director's Pioneer Award for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salaita, K., Wang, Y. & Mirkin, C. Applications of dip-pen nanolithography. Nature Nanotech 2, 145–155 (2007). https://doi.org/10.1038/nnano.2007.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing