Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A novel hybrid carbon material

Abstract

Both fullerenes and single-walled carbon nanotubes (SWNTs) exhibit many advantageous properties1. Despite the similarities between these two forms of carbon, there have been very few attempts to physically merge them2,3. We have discovered a novel hybrid material that combines fullerenes and SWNTs into a single structure in which the fullerenes are covalently bonded to the outer surface of the SWNTs. These fullerene-functionalized SWNTs, which we have termed NanoBuds, were selectively synthesized in two different one-step continuous methods, during which fullerenes were formed on iron-catalyst particles together with SWNTs during CO disproportionation. The field-emission characteristics of NanoBuds suggest that they may possess advantageous properties compared with single-walled nanotubes or fullerenes alone, or in their non-bonded configurations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM observation of NanoBud structures.
Figure 2: Characterization of NanoBuds.
Figure 3: Bonding scenarios of fullerenes on SWNTs.
Figure 4: Field-emission properties of NanoBuds.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996).

    Google Scholar 

  2. Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes, Nature 396, 323–324 (1998).

    Article  CAS  Google Scholar 

  3. Urita, K. Y. et al. Defect-induced atomic migration in carbon nanopeapod: tracking the single-atom dynamic behaviour. Nano Lett. 4, 2451–2454 (2004).

    Article  CAS  Google Scholar 

  4. Moisala, A., Nasibulin, A. G., Shandakov, S. D., Jiang, H. & Kauppinen, E. I. On-line detection of single-walled carbon nanotube formation during aerosol synthesis method. Carbon 43, 2066–2074 (2005).

    Article  CAS  Google Scholar 

  5. Nasibulin, A. G., Moisala, A., Brown, D. P., Jiang, H. & Kauppinen, E. I. A novel aerosol method for single walled carbon nanotube synthesis. Chem. Phys. Lett. 402, 227–232 (2005).

    Article  CAS  Google Scholar 

  6. Nasibulin, A. G. et al. An essential role of CO2 and H2O during SWNT synthesis from carbon monoxide. Chem. Phys. Lett. 417, 179–184 (2006).

    Article  CAS  Google Scholar 

  7. Smith, B. W. & Luzzi, D. E. Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett. 321, 169–174 (2000).

    Article  CAS  Google Scholar 

  8. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  9. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  Google Scholar 

  10. Weisman, R. B., Heymann, D. & Bachilo, S. M. Synthesis and characterization of the ‘missing’ oxide of C60: [5,6]-open C60O. J. Am. Chem. Soc. 123, 9720–9721 (2001).

    Article  CAS  Google Scholar 

  11. Benedetto, A. F., Bachilo, S. M. Weisman, R. B., Nossal, J. R. & Billups, W. E. Photophysical studies of 1,2-C70H2 . J. Phys. Chem. A 103, 10842–10845 (1999).

    Article  CAS  Google Scholar 

  12. Eklund, P. C., Holden, J. M. & Jishi, R. A. Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon 33, 959–972 (1995).

    Article  CAS  Google Scholar 

  13. Lin-Vien, D., Colthup, N. B., Fateley, W. G. & Grasselli, J. G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, Boston, San Diego, New York, London, Sydney, Tokyo, Toronto, 1991).

    Google Scholar 

  14. Hornbaker, D. J. et al. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 295, 828–831 (2002).

    Article  CAS  Google Scholar 

  15. Frauenheim, T. et al. Atomistic simulations of complex materials: ground state and excited state properties. J. Phys. Condens. Matter 14, 3015–3047 (2002).

    Article  CAS  Google Scholar 

  16. Banerjee, S., Hemraj-Benny, T. & Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 17, 17–29 (2005).

    Article  CAS  Google Scholar 

  17. Berber, S., Kwon, Y.-K. & Tománek, D. Microscopic formation mechanism of nanotube peapods. Phys. Rev. Lett. 88, 185502 (2002).

    Article  Google Scholar 

  18. Kim, S. & Tománek, D. Melting the fullerenes: a molecular dynamics study. Phys. Rev. Lett. 72, 2418–2421 (1994).

    Article  CAS  Google Scholar 

  19. Nasibulin, A. G., Pikhitsa, P. V., Jiang, H. & Kauppinen, E. I. Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 43, 2251–2257 (2005).

    Article  CAS  Google Scholar 

  20. Nasibulin, A. G. et al. Studies on mechanism of single-walled carbon nanotube formation. J. Nanosci. Nanotechnol. 6, 1233–1246 (2006).

    Article  CAS  Google Scholar 

  21. Shibuta, Y. & Maruyama, S. Molecular dynamics simulation of generation process of SWNTs. Physica B 323, 187–189 (2002).

    Article  CAS  Google Scholar 

  22. Ding, F., Rosén, A. & Bolton, K. The role of the catalytic particle temperature gradient for SWNT growth from small particles. Chem. Phys. Lett. 393, 309–313 (2004).

    Article  CAS  Google Scholar 

  23. Talyzin, A.V. et al. Gentle fragmentation of C60 by strong hydrogenation: a route for synthesising new materials. Chem. Phys. Lett. 400, 112–116 (2004).

    Article  CAS  Google Scholar 

  24. Graff, R. A. et al. Achieving individual-nanotube dispersion at high loading in single-walled carbon nanotube composites. Adv. Mater. 17, 980–984 (2005).

    Article  CAS  Google Scholar 

  25. Yang, C., Zhong, Z. & Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310, 1304–1307 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Pore, A.-S. Jääskeläinen, M. Leskelä and Sangsun Yang for their assistance with UV–vis and field emission measurements. Financial support from the Academy of Finland and the Creative Research Initiatives Program supported by the Korean Ministry of Science and Technology is acknowledged. Partial financial support for this work has been provided by NSF NSEC grant no. 425826. G.L. thanks JSPS for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.G.N., P.V.P. and E.I.K. conceived and designed the experiments. H.J., P.V.P., A.S.A., D.P.B., P.Q., D.G., A.M. and G.L. performed the experiments. A.G.N., P.V.P., E.I.K., D.B.P., S.D.S., D.E.R. and M.C. analysed and interpreted the data. A.G.N., D.P.B., P.V.P., E.I.K., A.H., A.V.K. and D.T. co-wrote the paper. A.V.K. is responsible for computer atomic simulations. G.L. and A.H. are responsible for STM measurements. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Albert G. Nasibulin or Esko I. Kauppinen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1—S11 (PDF 1849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasibulin, A., Pikhitsa, P., Jiang, H. et al. A novel hybrid carbon material. Nature Nanotech 2, 156–161 (2007). https://doi.org/10.1038/nnano.2007.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing