Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microcavity effects and optically pumped lasing in single conjugated polymer nanowires

Abstract

Conjugated polymers have chemically tuneable opto-electronic properties and are easily processed, making them attractive materials for photonics applications1,2. Conjugated polymer lasers, in a variety of resonator geometries such as microcavity3, micro-ring4, distributed feedback5 and photonic bandgap6 structures, have been fabricated using a range of coating and imprinting techniques. Currently, one-dimensional nanowires are emerging as promising candidates for integrated, subwavelength active and passive photonic devices7,8,9,10. We report the first observation of optically pumped lasing in single conjugated polymer nanowires. The waveguide and resonator properties of each wire are characterized in the far optical field at room temperature. The end faces of the nanowire are optically flat and the nanowire acts as a cylindrical optical cavity, exhibiting axial Fabry–Pérot mode structure in the emission spectrum. Above a threshold incident pump energy, the emission spectrum collapses to a single, sharp peak with an instrument-limited line width that is characteristic of single-mode excitonic laser action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopy images of nanowires.
Figure 2: Optical characteristics of nanowires.
Figure 3: Microcavity effects in single PFO nanowires.
Figure 4: Optically pumped single PFO nanowire laser.

Similar content being viewed by others

References

  1. Sirringhaus, H., Tessler, N. & Friend, R. H. Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998).

    Article  CAS  Google Scholar 

  2. Carpi, F. & De Rossi, D. Colours from electroactive polymers: electrochromic, electroluminescent and laser devices based on organic materials. Opt. Laser Technol. 38, 292–305 (2006).

    Article  CAS  Google Scholar 

  3. Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    Article  CAS  Google Scholar 

  4. Frolov, S. V., Shkunov, M., Vardeny, Z. V. & Yoshino, K. Ring microlasers from conducting polymers. Phys. Rev. B 56, R4363–4366 (1997).

    Article  CAS  Google Scholar 

  5. Heliotis, G. et al. Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14, 91–97 (2004).

    Article  CAS  Google Scholar 

  6. Riechel, S. et al. A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Appl. Phys. Lett. 77, 2310–2312 (2000).

    Article  CAS  Google Scholar 

  7. Johnson, J. C. et al. J. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    Article  CAS  Google Scholar 

  8. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  CAS  Google Scholar 

  9. Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004).

    Article  CAS  Google Scholar 

  10. Tong, L. et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003).

    Article  CAS  Google Scholar 

  11. Xia, R., Heliotis, G., Hou, Y. & Bradley, D. D. C. Fluorene-based conjugated polymer optical gain media. Org. Electron. 4, 165–177 (2003).

    Article  CAS  Google Scholar 

  12. Ariu, M. et al. The effect of morphology on the temperature-dependent photoluminescence quantum efficiency of the conjugated polymer poly(9,9-dioctylfluorene). J. Phys.: Condens. Matter 14, 9975–9986 (2002).

    CAS  Google Scholar 

  13. Rothe, C., Galbrecht, F., Scherf, U. & Monkman, A. The β-phase of poly(9,9-dioctylfluorene) as a potential system for electrically pumped organic lasing. Adv. Mater. 18, 2137–2140 (2006).

    Article  CAS  Google Scholar 

  14. Babel, A., Li, D., Xia, Y. & Jenekhe, S. A. Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules 38, 4705–4711 (2005).

    Article  CAS  Google Scholar 

  15. Masuo, S. et al. Assembling and orientation of polyfluorenes in solution controlled by a focused near-infrared laser beam. J. Phys. Chem. B 109, 6917–6921 (2005).

    Article  CAS  Google Scholar 

  16. Zhang, X., Zhang, J., Song, W. & Liu, Z. Controllable synthesis of conducting polypyrrole nanostructures. J. Phys. Chem. B 110, 1158–1165 (2006).

    Article  CAS  Google Scholar 

  17. Steinhart, M. et al. Polymer nanotubes by wetting of ordered porous templates. Science 296, 1997 (2002).

    Article  CAS  Google Scholar 

  18. Chen, S. H., Su, A. C., Su, C. H. & Chen, S. A. Crystalline forms and emission behavior of poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 38, 379–385 (2005).

    Article  CAS  Google Scholar 

  19. Sims, M. et al. Understanding the origin of the 535 nm emission band in oxidized poly(9,9-dioctylfluorene): the essential role of inter-chain/inter-segment interactions. Adv. Funct. Mater. 14, 765–781 (2004).

    Article  CAS  Google Scholar 

  20. Balzer, F., Bordo, V. G., Simonsen, A. C. & Rubahn, H.-G. Optical waveguiding in individual nanometer-scale organic fibers. Phys. Rev. B 67, 115408 (2003).

    Article  Google Scholar 

  21. Campoy-Quiles, M. et al. Ellipsometric characterisation of the optical constants of polyfluorene gain media. Adv. Funct. Mater. 15, 925–933 (2005).

    Article  CAS  Google Scholar 

  22. Johnson, J. C., Yan, H., Yang, P. & Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 8816–8828 (2003).

    Article  CAS  Google Scholar 

  23. Snyder, A. W. & Love, D. Optical Waveguide Theory (Kluwer Academic Publishers, Boston, 1983).

    Google Scholar 

  24. Hide, F., Schwartz, B. J., Díaz-García, M. A. & Heeger, A. J. Conjugated polymers as solid-state laser materials. Synth. Met. 91, 35–40 (1997).

    Article  CAS  Google Scholar 

  25. Virgili, T. et al. An ultrafast spectroscopy study of stimulated emission in poly(9,9-dioctylfluorene) films and microcavities. Appl. Phys. Lett. 74, 2767–2769 (1999).

    Article  CAS  Google Scholar 

  26. Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Iacopino for assistance with SEM measurements. The support of the Irish HEA PRTLI Programme and IRCSET Embark Initiative as well as the European Union Sixth Framework Programme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth Redmond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1—S4 (PDF 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Carroll, D., Lieberwirth, I. & Redmond, G. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nature Nanotech 2, 180–184 (2007). https://doi.org/10.1038/nnano.2007.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing